[leetcode] Combination Sum

本文详细介绍了使用回溯算法解决组合总和问题,并通过实例展示了其应用过程。同时,对比了回溯算法与动态规划算法在解决同一问题时的效率差异。文中还提供了一个优化剪枝的回溯算法版本,以及动态规划的解法作为补充,旨在为读者提供全面的理解和选择依据。

Combination Sum

Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 2,3,6,7 and target 7
A solution set is: 
[7] 
[2, 2, 3] 

思路:

回溯算法。一个一个寻找所有可行解。最初的想法是当前和加上一个数字,递归一次与目标值进行比较,如果相等,就找到了一个,如果比目标值大,退出,如果小则继续。因为结果可以有重复元素,所以每次递归都必须从当前值继续。

这样也通过了,但是想想应该有更好地剪枝方法,于是更改了一个判断条件,如果目标值与当前和之差大于即将加上的元素,就直接退出,这样少了一次递归。可是结果并没有很明显的改变。应该有更好地剪枝方法,以后再想。

题解:

class Solution {
public:
    vector<vector<int> > res;
    vector<int> tmp;
    void foo(vector<int> &candidates, int target, int sum, int index) {
        if(sum==target) {
            res.push_back(tmp);
            return;
        }
        if(sum+candidates[index]>target)
            return;
        for(int i=index;i<candidates.size();i++) {
            tmp.push_back(candidates[i]);
            sum += candidates[i];
            foo(candidates, target, sum, i);
            sum -= candidates[i];
            tmp.pop_back();
        }
    }
    vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
        sort(candidates.begin(), candidates.end());
        if(candidates[0]>target)
            return res;
        foo(candidates, target, 0, 0);
        return res;
    }
};
View Code

后话:

从disuss中发现了有人用dp的算法做了一遍,大概看了一下没看懂,也放上来,以后和剪枝方法一起研究。

class Solution {
public:
    vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
        vector< vector< vector<int> > > combinations(target + 1, vector<vector<int>>());
        combinations[0].push_back(vector<int>());
        for (auto& score : candidates)
            for (int j = score; j <= target; j++)
                if (combinations[j - score].size() > 0) {
                    auto tmp = combinations[j - score];
                    for (auto& s : tmp)
                        s.push_back(score);
                    combinations[j].insert(combinations[j].end(), tmp.begin(), tmp.end());
                }
        auto ret = combinations[target];
        for (int i = 0; i < ret.size(); i++)
            sort(ret[i].begin(), ret[i].end());
        return ret;
    }
};
View Code

 

转载于:https://www.cnblogs.com/jiasaidongqi/p/4188253.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值