【BZOJ】3479: [Usaco2014 Mar]Watering the Fields(kruskal)

这篇博客探讨了一个在特定成本限制下,如何通过构建水管网络连接多个水龙头以实现最低费用的问题。通过详细解释算法步骤和示例输入输出,帮助读者理解如何在给定约束条件下找到最优解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.lydsy.com/JudgeOnline/problem.php?id=3479

这个还用说吗。。。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr2(a, b, c) for1(i, 1, b) { for1(j, 1, c) cout << a[i][j]; cout << endl; }
#define printarr1(a, b) for1(i, 1, b) cout << a[i]; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }

const int N=2005;
int p[N], n, c, cnt, ans;
struct ED { int x, y, w; }e[N*N];
struct dat { int x, y; }a[N];
bool cmp(const ED &a, const ED &b) { return a.w<b.w; }
inline int dis(dat &a, dat &b) { return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); }
const int ifind(const int &x) { return x==p[x]?x:p[x]=ifind(p[x]); }

int main() {
	read(n); read(c);
	for1(i, 1, n) read(a[i].x), read(a[i].y);
	for1(i, 1, n) for1(j, 1, n) if(i!=j) {
		e[++cnt].x=i, e[cnt].y=j;
		e[cnt].w=dis(a[i], a[j]);
	}
	sort(e+1, e+1+cnt, cmp);
	int tot=0;
	for1(i, 1, n) p[i]=i;
	for1(i, 1, cnt) {
		if(e[i].w>=c) {
			int fx=ifind(e[i].x), fy=ifind(e[i].y);
			if(fx!=fy) {
				p[fx]=fy;
				ans+=e[i].w;
			++tot;
			}
		}
	}
	if(tot<n-1) puts("-1");
	else print(ans);
	return 0;
}

 

 


 

 

Description

 Due to a lack of rain, Farmer John wants to build an irrigation system to send water between his N fields (1 <= N <= 2000). Each field i is described by a distinct point (xi, yi) in the 2D plane, with 0 <= xi, yi <= 1000. The cost of building a water pipe between two fields i and j is equal to the squared Euclidean distance between them: (xi - xj)^2 + (yi - yj)^2 FJ would like to build a minimum-cost system of pipes so that all of his fields are linked together -- so that water in any field can follow a sequence of pipes to reach any other field. Unfortunately, the contractor who is helping FJ install his irrigation system refuses to install any pipe unless its cost (squared Euclidean length) is at least C (1 <= C <= 1,000,000). Please help FJ compute the minimum amount he will need pay to connect all his fields with a network of pipes.

草坪上有N个水龙头,位于(xi,yi)

求将n个水龙头连通的最小费用。
任意两个水龙头可以修剪水管,费用为欧几里得距离的平方。 修水管的人只愿意修费用大于等于c的水管。

Input

* Line 1: The integers N and C.

* Lines 2..1+N: Line i+1 contains the integers xi and yi.

Output

* Line 1: The minimum cost of a network of pipes connecting the fields, or -1 if no such network can be built. 

Sample Input

3 11
0 2
5 0
4 3

INPUT DETAILS: There are 3 fields, at locations (0,2), (5,0), and (4,3). The contractor will only install pipes of cost at least 11.

Sample Output

46
OUTPUT DETAILS: FJ cannot build a pipe between the fields at (4,3) and (5,0), since its cost would be only 10. He therefore builds a pipe between (0,2) and (5,0) at cost 29, and a pipe between (0,2) and (4,3) at cost 17.

HINT

Source

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值