Diamond Collector (动态规划)

本文介绍了一道关于钻石收集的算法题,旨在寻找最优方案来展示不同大小的钻石。问题要求将钻石分配到两个展柜中,使得每个展柜内的钻石大小相近,且总体展示的钻石数量最多。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题 I: Diamond Collector

时间限制: 1 Sec  内存限制: 64 MB
提交: 22  解决: 7
[提交][状态][讨论版]

题目描述

Bessie the cow, always a fan of shiny objects, has taken up a hobby of mining diamonds in her spare time! She has collected N diamonds (N≤50,000) of varying sizes, and she wants to arrange some of them in a pair of display cases in the barn.

Since Bessie wants the diamonds in each of the two cases to be relatively similar in size, she decides that she will not include two diamonds in the same case if their sizes differ by more than K
(two diamonds can be displayed together in the same case if their sizes differ by exactly K). Given K, please help Bessie determine the maximum number of diamonds she can display in both cases together.

输入

The first line of the input file contains N and K (0≤K≤1,000,000,000). The next N lines each contain an integer giving the size of one of the diamonds. All sizes will be positive and will not exceed 1,000,000,000.

输出

 Output a single positive integer, telling the maximum number of diamonds that Bessie can showcase in total in both the cases.

样例输入

7 3
10
5
1
12
9
5
14

样例输出

5
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 1000000007
typedef long long ll;
using namespace std;
const int N=50010;
int n,dp[N],len,g[N];
ll k,a[N];
int w[21][21];
int flag=0;
int vis[10000]={0};
string str[21],ch;
int maxn=1;
map<string,int>p,pp;
 
 
int main() {
    memset(dp,0,sizeof(dp));
    cin>>n>>k;
    for(int i=1;i<=n;i++)cin>>a[i];
    sort(a+1,a+n+1);
    int m=1,r=1;
    for(int i=1;i<=n;i++)
    {
       while(a[r+1]-a[i]<=k&&r<n) r++;
       dp[i]=r-i+1;
    }
    for(int i=n;i>=1;i--)
        g[i]=max(g[i+1],dp[i]);
    int ans=0;
    for(int i=1;i<=n;i++)
        ans=max(ans,dp[i]+g[i+dp[i]]);
    cout<<ans<<endl;
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/jianrenfang/p/5719856.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值