Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
题目:
最大子数组和
思路:
1、暴力枚举
起点:i=0,...,n-1;终点:j=i,....,n-1;依次求[i,j]区间的和,时间复杂度O(n^3)
2、优化枚举
起点:i=0,...,n-1;终点:j=i,....,n-1;累计求[i,j]区间的和,时间复杂度O(n^2)
3、分治算法
分:两个等长的子数组,分别求解,复杂度O(nlogn)
合:求包含中间点的最大子数组之和,复杂度O(n)
时间复杂度:O(nlogn)
4、动态规划
假设dp[i]表示以a[i]结尾的最大子数组和,那么
状态转移方程:
dp[i]=max(dp[i-1]+a[i],a[i])
- 包含a[0,i-1]:dp[i-1]+a[i]
- 不包含a[0,i-1]:a[i]
初始值:
dp[0]=a[0]
复杂度:
时间复杂度:O(n),空间复杂度:O(n)
空间优化:
dp[i]只与dp[i-1]有关,因此状态转移方程优化为:
best=max(best+a[i],a[i])
其实这里的动态规划实现的是一种简单的逻辑,即前面的数组和大于0,则加上,小于或等于0,则放弃。
if(cur>0)
cur+=A[i];
else
cur=A[i];
5、前缀数组和
定义:sum[i]=a[0]+a[1]+...+a[i]
sum(A[i....j])=sum[j]-sum[i-1]
对于数组A,以A[i]结尾的最大子数组和为sum[i]-min(sum(k)),k=0...i-1,因此需保存每一步计算中的最小sum值。
依次计算以A[i]结尾的最大子数组和,然后保留其最大值即可,详见代码。
代码:
只实现分治、动态规划以及前缀和三种思路
1、分治
class Solution {
public:
int maxSubArray(int A[], int n) {
if(n==1)
return A[0];
int mid=n/2;
int left=maxSubArray(A,mid);
int right=maxSubArray(A+mid,n-mid);
int ans=max(left,right);
int cur=A[mid-1];
int tmp=cur;
for(int i=mid-2;i>=0;i--){
cur+=A[i];
if(cur>tmp)
tmp=cur;
}
cur=tmp;
for(int i=mid;i<n;i++){
cur+=A[i];
if(cur>tmp)
tmp=cur;
}
return max(ans,tmp);
}
};
2、动态规划
class Solution {
public:
int maxSubArray(int A[], int n) {
int cur=A[0];
int max=A[0];
for(int i=1;i<n;i++){
if(cur>0)
cur+=A[i];
else
cur=A[i];
if(cur>max)
max=cur;
}
return max;
}
};
class Solution {
public:
int maxSubArray(int A[], int n) {
int endhere=A[0];
int ans=A[0];
for(int i=1;i<n;i++){
endhere=max(endhere+A[i],A[i]);
ans=max(ans,endhere);
}
return ans;
}
};
3、前缀数组和
class Solution {
public:
int maxSubArray(int A[], int n) {
int sum=A[0];
int minSum=min(0,sum);
int ans=A[0];
for(int i=1;i<n;i++){
sum+=A[i];
ans=max(ans,sum-minSum);
minSum=min(minSum,sum);
}
return ans;
}
};