HDU 4666 Hyperspace (2013多校7 1001题 最远曼哈顿距离)

本文探讨了在高维空间中,粒子随机出现和消失时,如何计算最大曼哈顿距离的问题。通过维护特定数量的堆来追踪最大值和最小值,实现了高效的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hyperspace

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 67    Accepted Submission(s): 32


Problem Description
The great Mr.Smith has invented a hyperspace particle generator. The device is very powerful. The device can generate a hyperspace. In the hyperspace, particle may appear and disappear randomly. At the same time a great amount of energy was generated.
However, the device is in test phase, often in a unstable state. Mr.Smith worried that it may cause an explosion while testing it. The energy of the device is related to the maximum manhattan distance among particle.
Particles may appear and disappear any time. Mr.Smith wants to know the maxmium manhattan distance among particles when particle appears or disappears.
 

 

Input
The input contains several test cases, terminated by EOF.
In each case: In the first line, there are two integer q(number of particle appear and disappear event, ≤60000) and k(dimensions of the hyperspace that the hyperspace the device generated, ≤5). Then follows q lines. In each line, the first integer ‘od’ represents the event: od = 0 means this is an appear
event. Then follows k integer(with absolute value less then 4 × 10 7). od = 1 means this is an disappear event. Follows a integer p represents the disappeared particle appeared in the pth event.
 

 

Output
Each test case should contains q lines. Each line contains a integer represents the maximum manhattan distance among paticles.
 

 

Sample Input
10 2 0 208 403 0 371 -180 1 2 0 1069 -192 0 418 -525 1 5 1 1 0 2754 635 0 -2491 961 0 2954 -2516
 

 

Sample Output
0 746 0 1456 1456 1456 0 2512 5571 8922
 

 

Source
 

 

Recommend
zhuyuanchen520
 

 

 

 

 

经典的求最远曼哈顿距离。

 

可以看相应的论文:2009年国家集训队武森论文

 

其实就是维护(1<<k)个堆的最大值和最小值。

可以参考POJ 2926

 

我用multiset实现的。

可以使用map或者优先队列

 1 /* **********************************************
 2 Author      : kuangbin
 3 Created Time: 2013/8/13 18:25:38
 4 File Name   : F:\2013ACM练习\2013多校7\1001.cpp
 5 *********************************************** */
 6 
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include <iostream>
10 #include <algorithm>
11 #include <vector>
12 #include <queue>
13 #include <set>
14 #include <map>
15 #include <string>
16 #include <math.h>
17 #include <stdlib.h>
18 using namespace std;
19 int a[60010][10];
20 multiset<int>mst[1<<5];
21 
22 int main()
23 {
24     //freopen("in.txt","r",stdin);
25     //freopen("out.txt","w",stdout);
26     int q,k;
27     while(scanf("%d%d",&q,&k)==2)
28     {
29         for(int i = 0;i < (1<<k);i++)
30             mst[i].clear();
31         int od,x;
32         for(int i = 1;i <= q;i++)
33         {
34             scanf("%d",&od);
35             if(od == 0)
36             {
37                 for(int j = 0;j < k;j++)
38                     scanf("%d",&a[i][j]);
39                 for(int j = 0; j < (1<<k); j++)
40                 {
41                     int s = 0;
42                     for(int t = 0; t < k;t++)
43                         if(j & (1<<t))
44                             s += a[i][t];
45                         else s -= a[i][t];
46                     mst[j].insert(s);
47                 }
48             }
49             else
50             {
51                 scanf("%d",&x);
52                 for(int j = 0; j < (1<<k); j++)
53                 {
54                     int s = 0;
55                     for(int t = 0; t < k;t++)
56                         if(j & (1<<t))
57                             s += a[x][t];
58                         else s -= a[x][t];
59                     multiset<int>::iterator it = mst[j].find(s);
60                     mst[j].erase(it);
61                 }
62             }
63             int ans = 0;
64             for(int j = 0; j < (1<<k);j++)
65             {
66                 multiset<int>::iterator it = mst[j].end();
67                 it--;
68                 int t1 = (*it);
69                 it = mst[j].begin();
70                 int t2 = (*it);
71                 ans = max(ans,t1-t2);
72             }
73             printf("%d\n",ans);
74         }
75     }
76     return 0;
77 }

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值