感知器算法

本文深入探讨了感知器算法的核心概念,包括其如何将逻辑回归简化为仅产生0或1的输出,以及其学习规则与逻辑回归的相似性。通过对比分析,揭示了感知器算法在机器学习领域的应用价值与局限性。

在logistic方法中,g(z)会生成[0,1]之间的小数,但如何是g(z)只生成0或1?

所以,感知器算法将g(z)定义如下:

 

同样令,和logistic回归的梯度上升算法类似,学习规则如下:

 

尽管看起来和之前的学习算法类似,但感知器算法是一种非常简便的学习算法,临界值和输出只能是0或1,是比logistic更简单的算法。后续讲到学习理论是,会将其作为基本的构造步骤。

转载于:https://www.cnblogs.com/lanying/p/4035089.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值