吴恩达机器学习笔记55-异常检测算法的特征选择(Choosing What Features to Use of Anomaly Detection)...

本文探讨了异常检测算法中特征选择的重要性,包括如何通过转换使数据更接近高斯分布,以及如何通过组合特征来提高检测效果。文章还讨论了误差分析在提升异常检测准确性中的作用。

  对于异常检测算法,使用特征是至关重要的,下面谈谈如何选择特征:

  异常检测假设特征符合高斯分布,如果数据的分布不是高斯分布,异常检测算法也能够
工作,但是最好还是将数据转换成高斯分布,例如使用对数函数:? = ???(? + ?),其中 ?
为非负常数; 或者 ? = ?^?,?为 0-1 之间的一个分数,等方法。

(注:在python 中,通常用np.log1p()函数,???1?就是 ???(? + 1),可以避免
出现负数结果,反向函数就是np.expm1())

误差分析:
  一个常见的问题是一些异常的数据可能也会有较高的?(?)值,因而被算法认为是正常的。
这种情况下误差分析能够帮助我们,我们可以分析那些被算法错误预测为正常的数据,观察
能否找出一些问题。我们可能能从问题中发现我们需要增加一些新的特征,增加这些新特征
后获得的新算法能够帮助我们更好地进行异常检测。

异常检测误差分析:

  我们也可以通过将一些相关的特征进行组合,来获得一些新的更好的特征(异常数据
的该特征值异常地大或小),例如,在检测数据中心的计算机状况的例子中,我们可以用CPU
负载与网络通信量的比例作为一个新的特征,如果该值异常地大,便有可能意味着该服务器
是陷入了一些问题中。

总结:

  上面介绍了

  1.如何选择特征,以及对特征进行一些小小的转换,让数据更
像正态分布,然后再把数据输入异常检测算法;

  2.建立特征时,进行的误差分析的方法,来捕捉各种异常的可能。

转载于:https://www.cnblogs.com/sl0309/p/10536232.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值