HDOJ-2069Coin Change(母函数加强)

本文介绍了一个解决硬币兑换问题的算法实现,通过多种硬币组合凑出特定金额的方法,并限制了硬币总数不超过100个。算法通过动态规划方法计算不同组合方式的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Coin Change

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9939    Accepted Submission(s): 3343


Problem Description
Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make changes with these coins for a given amount of money.

For example, if we have 11 cents, then we can make changes with one 10-cent coin and one 1-cent coin, or two 5-cent coins and one 1-cent coin, or one 5-cent coin and six 1-cent coins, or eleven 1-cent coins. So there are four ways of making changes for 11 cents with the above coins. Note that we count that there is one way of making change for zero cent.

Write a program to find the total number of different ways of making changes for any amount of money in cents. Your program should be able to handle up to 100 coins.
 

 

Input
The input file contains any number of lines, each one consisting of a number ( ≤250 ) for the amount of money in cents.
 

 

Output
For each input line, output a line containing the number of different ways of making changes with the above 5 types of coins.
 

 

Sample Input
11 26
 

 

Sample Output
4 13
 

 

Author
Lily
 
题解:
题目出来不仅要凑出输入的钱数,而且所用硬币的数量之和不能大于100,
c1[i][j]:
    表示 i分钱由 j个硬币组成的方案数, 然后在循环中增加一个循环:用于保存在当前硬币数量 k上增加
1...n 个硬币时(k+n <= 100)方案数。
 1 #include <cstdio>
 2 #include <iostream>
 3 
 4 using namespace std;
 5 
 6 int sum[251];
 7 int c1[251][101], c2[251][101];
 8 int val[6] = {0, 1, 5, 10, 25, 50};
 9 
10 void init()
11 {
12     c1[0][0] = 1;
13     for(int i = 1; i <= 5; ++i)
14     {
15         for(int j = 0; j <= 250; ++j)
16         {
17             for(int k = 0; k*val[i]+j <= 250; ++k)
18                 for(int p = 0; p+k <= 100; ++p)   // 增加的循环 
19                     c2[j+k*val[i]][p+k] += c1[j][p];
20         }
21         for(int j = 0; j <= 250; ++j)
22         {
23             for(int k = 0; k <= 100; ++k)
24             {
25                 c1[j][k] = c2[j][k];
26                 c2[j][k] = 0;
27             }
28         }
29     }
30     for(int i = 0; i <= 250; ++i)
31         for(int k = 0; k <= 100; ++k)
32             sum[i] += c1[i][k];
33 }
34 
35 int main()
36 {
37     int tot;
38     init();
39     while(~scanf("%d", &tot))
40     {
41         printf("%d\n", sum[tot]);
42     }
43     return 0;
44 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值