jchdl - GSL实例 - Add

本文介绍如何使用FullAdder级联实现加法器,通过创建Add.java类,定义构造方法和logic()方法,实现多位加法运算。文章详细讲解了输入输出线的连接过程,以及如何通过Verilog生成模块。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
使用FullAdder级联实现加法器
 
参考链接:
 
 
1.创建Add.java, 并生成构造方法和logic()方法
 
2. 根据逻辑原理图,添加输入输出线
 
 
3. 在构造方法中搜集输入输出线并调用construct()方法
 
4. 在logic()方法中创建子节点并连线
 
这里首先从input ports牵出线,并创建连接到output ports的线。其中,最后一个input port使用in(-1)取出。最后一个output port使用out(-1)取出。
 
cout作为一个游标,逐次指向每一级的进位线进行连接。最开始为cin,第一级之后代表这一级FullAdder的进位线...直到最后,代表最后一个进位线连接到Add节点的最后一个output port.
 
5. 创建inst静态方法方便后续使用
 
6. 创建main方法执行验证
 
 
运行结果为:
 
 
 
7. 生成Verilog
 
执行结果如下:
 
module Add_8后面多出来一个8?这样就可以把不同位宽的Add模块区分开来。
需要覆盖getName()方法:
 
原子节点需要覆盖primitive()方法,以返回原语的名称。比如与门,需要返回and:
 
 
更多实例请参考如下链接:
 
package org.jchdl.model.gsl.operator.arithmetic;
 
import org.jchdl.model.gsl.core.datatype.helper.WireVec;
import org.jchdl.model.gsl.core.datatype.net.Wire;
import org.jchdl.model.gsl.core.meta.Node;
import org.jchdl.model.gsl.core.value.Value;
 
// treat operands as plain bits
public class Add extends Node {
private int nBits = 0;
 
private WireVec in1;
private WireVec in2;
private Wire cin;
private WireVec sum;
private Wire cout;
 
public Add(WireVec sum, Wire cout, WireVec in1, WireVec in2, Wire cin) {
nBits = in1.nBits();
in(in1.wires());
in(in2.wires());
in(cin);
out(sum.wires());
out(cout);
construct();
}
 
@Override
public void logic() {
in1 = new WireVec(inputs(0, nBits));
in2 = new WireVec(inputs(nBits, 2*nBits));
cin = new Wire(in(-1));
 
sum = new WireVec(outputs(0, nBits));
 
cout = cin;
for (int i = 0; i < nBits; i++) {
Wire coutNext = new Wire();
FullAdder.inst(sum.wire(i), coutNext, in1.wire(i), in2.wire(i), cout);
cout = coutNext;
}
cout.connect(out(-1));
}
 
@Override
public String getName() {
return this.getClass().getSimpleName() + "_" + nBits;
}
 
public static Add inst(WireVec sum, Wire cout, WireVec in1, WireVec in2, Wire cin) {
return new Add(sum, cout, in1, in2, cin);
}
 
public static void main(String args[]) {
WireVec in1 = new WireVec(8);
WireVec in2 = new WireVec(8);
WireVec out = new WireVec(8);
Wire cin = new Wire();
Wire cout = new Wire();
 
Add.inst(out, cout, in1, in2, cin);
 
in1.assign(new Value[] { //0b0000_0010
Value.V0, Value.V1, Value.V0, Value.V0,
Value.V0, Value.V0, Value.V0, Value.V0,
});
in2.assign(new Value[] { // 0b1111_1111
Value.V1, Value.V1, Value.V1, Value.V1,
Value.V1, Value.V1, Value.V1, Value.V1,
});
cin.assign(Value.V1);
 
in1.propagate();
in2.propagate();
cin.propagate();
 
System.out.println("c_sum: " + cout + "_" + out);
 
Add.inst(out, cout, in1, in2, cin).toVerilog();
}
}
 
 
 

转载于:https://www.cnblogs.com/wjcdx/p/9685962.html

内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值