Description:
The gray code is a binary numeral system where two successive values differ in only one bit.
Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
For example, given n = 2, return [0,1,3,2]
. Its gray code sequence is:
00 - 0 01 - 1 11 - 3 10 - 2
Note:
For a given n, a gray code sequence is not uniquely defined.
For example, [0,2,3,1]
is also a valid gray code sequence according to the above definition.
For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.
描述:
给出的n代表比特位数,求出在该比特位数下的格雷码,并且按照顺序输出他们的十进制数。
比如,给出n=2,返回[0, 1, 3, 2],他们代表的格雷码顺序为:
00 - 0 01 - 1 11 - 3 10 - 2
下面的note是说,其实格雷码有好多种顺序,因为只需要满足“相邻的数相差一个比特位”这个条件就可以了。不过目前这个系统只支持“正常”的格雷码顺序,请大家见谅。。。
解析:
有关格雷码,请参见:
http://en.wikipedia.org/wiki/Gray_code
讲得很清楚啦。另外其实一下两篇博客都讲的很好:
http://fisherlei.blogspot.com/2012/12/leetcode-gray-code.html
http://blog.youkuaiyun.com/worldwindjp/article/details/21536103
总之,按照http://en.wikipedia.org/wiki/Gray_code#Constructing_an_n-bit_Gray_code
基本思路是有了。但是看到leetcode上的discuss,才想到其实空间是可以节省的:
在访问逆序那里,下标从最后一个数开始访问,一直访问到第一个数,便是逆序;另外,在二进制数最前面加上一个比特位1,相当于是加上了1<<n-1所代表的十进制数。
因此,C++代码:
1 class Solution { 2 public: 3 vector<int> grayCode(int n) 4 { 5 vector<int> result(1, 0); 6 for(int i = 0; i < n; i++) { 7 int numberAdded = 1<<i; 8 9 for(int j = result.size() - 1; j >= 0; j--) { 10 int reversed = result[j]; 11 reversed += numberAdded; 12 result.push_back( reversed ); 13 } 14 } 15 16 return result; 17 } 18 };