PlaNet,使用图像输入来学习世界模型

GoogleAI与DeepMind合作开发的PlaNet,是一个仅用图像输入学习世界模型的人工智能代理,能解决多种基于图像的控制任务,与先进无模型代理商竞争。通过压缩图像至潜在状态,PlaNet自动学习更抽象的表示,如位置和速度,无需生成图像即可预测未来。GoogleAI团队已发布源代码供研究。

Google AI团队与DeepMind合作,上周宣布了一个名为PlaNet的新的开源“Deep Planning”网络。 PlaNet是一个人工智能代理,它只使用图像输入来学习世界模型,并使用这些模型进一步计划以获得经验。

PlaNet可以轻松解决各种基于图像的控制任务,并与先进的无模型代理商竞争。 Google AI团队还发布了研究社区的源代码,以进一步探索和构建PlaNet。

PlaNet如何运作?
PlaNet依赖于隐藏或潜在状态的紧凑序列。这被称为潜在动力学模型,其中不是直接从一个图像预测到下一个图像,而是首先预测潜在状态前向。 “通过以这种方式压缩图像,代理可以自动学习更多抽象的表示,例如对象的位置和速度,使得更容易预测前进,而不需要一路生成图像”,Google AI团队表示。

在隐态动力学模型中,输入图像的信息通过编码器网络集成到隐态中。然后将隐藏状态进一步向前预测,以预测未来的图像和奖励。对于规划,将过去的图像编码成当前的隐藏状态,然后预测多个动作序列的未来奖励。

PlaNet,使用图像输入来学习世界模型PlaNet,使用图像输入来学习世界模型

PlaNet代理在不同的基于图像的控制任务上接受培训
PlaNet代理经过各种基于图像的控制任务的培训。这些任务带来了不同的挑战,例如部分可观察性,用于接球的稀疏奖励等。此外,训练单个PlaNet代理来解决所有六个任务。在不对超参数进行任何更改的情况下,此多任务代理能够实现与各个代理相同的平均性能。

“我们提倡进一步研究,重点是学习更高难度任务的精确动力学模型,例如3D环境和现实世界的机器人任务。我们对基于模型的强化学习开辟的可能性感到兴奋“,Google AI团队表示。

本文地址:https://www.linuxprobe.com/planet-ai.html

转载于:https://blog.51cto.com/14197666/2360342

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值