关于CALL FUNCTION [EXCEPTIONS [exc1 = n1 ……]

系统异常处理及消息类型处理规则
 

这里的EXCEPTIONS我的理解是:

系统默认的有个捕捉异常机制,后台会相应的处理,也就是说这里不开异常,系统后台也会自行处理
这里的异常可能是捕获,让自己进行处理,如果自己不处理,让系统后台会自行处理.
相应的消息type,后台会不同的对待,详细看on line help

Using EXCEPTIONS, return values can be assigned to non-class-based exceptions exc1 exc2.... Syntax and meaning of the addition are the same as for CALL METHOD - with the exception that a predefined exception error_message can be specified here. If no exception occurs, a function module call sets sy-subrc to 0.

If the error_message addition is specified after EXCEPTIONS, all MESSAGE statements that are executed during the processing of the function module and do not have the RAISING addition are affected as follows:

  • Messages of the type S, I, or W are not sent during background processing, but noted in the log.

  • Messages of the type E and A trigger the exception error_message and set sy-subrc to n_error. The message class, message type, message number, and the contents of possible placeholders for the MESSAGE statement are in the fields sy-msgid, sy-msgno, sy-msgty, and sy-msgv1, ... , sy-msgv4. With messages of the type A, the ROLLBACK WORK statement is also explicitly executed.

  • Messages of the type X are not influenced. As always, they cause program termination with a short dump.

If the RAISING statement is specified in a MESSAGE statement within the function module and a return value is assigned to the corresponding exception exc1 exc2..., sy-subrc is set to this value. If no return value is assigned to the exception after RAISING, the message is influenced, as described above, by the error_message addition.

As of Release 6.10, function modules can pass on class-based exceptions if exception classes are specified in the Function Builder. In this case, the EXCEPTIONS addition must not be specified.

Notes
  • For the message handling with the predefined exception AB>error_message, it does not make a difference if the message is sent in the currently called function module or in one that is called by this function module. Contrary to the exceptions that are triggered by the statement RAISE, messages sent using the statement MESSAGE are propagated across calling levels.
  • You can omit the specification of the return value = n after a specified exception when using CALL FUNCTION. If an exception is raised, the value 1 is assigned to sy-subrc. We recommend to specify the return value explicitly.

转载于:https://www.cnblogs.com/softbird/archive/2005/11/03/267900.html

PowerShell 7 环境已加载 (版本: 7.5.2) PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\PyTorch_Build\pytorch PS E:\PyTorch_Build\pytorch> .\pytorch_env\Scripts\activate (pytorch_env) PS E:\PyTorch_Build\pytorch> # 退出虚拟环境 (pytorch_env) PS E:\PyTorch_Build\pytorch> deactivate PS E:\PyTorch_Build\pytorch> PS E:\PyTorch_Build\pytorch> # 删除旧环境 PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force .\pytorch_env PS E:\PyTorch_Build\pytorch> Remove-Item -Recurse -Force .\cuda_env PS E:\PyTorch_Build\pytorch> PS E:\PyTorch_Build\pytorch> # 创建新虚拟环境 PS E:\PyTorch_Build\pytorch> python -m venv rtx5070_env PS E:\PyTorch_Build\pytorch> .\rtx5070_env\Scripts\activate (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装基础编译工具 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install -U pip setuptools wheel ninja cmake Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pip in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (22.3.1) Collecting pip Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/3f/945ef7ab14dc4f9d7f40288d2df998d1837ee0888ec3659c813487572faa/pip-25.2-py3-none-any.whl (1.8 MB) Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (65.5.0) Collecting setuptools Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) Collecting wheel Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl (72 kB) Collecting ninja Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/45/c0adfbfb0b5895aa18cec400c535b4f7ff3e52536e0403602fc1a23f7de9/ninja-1.13.0-py3-none-win_amd64.whl (309 kB) Collecting cmake Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7c/d0/73cae88d8c25973f2465d5a4457264f95617c16ad321824ed4c243734511/cmake-4.1.0-py3-none-win_amd64.whl (37.6 MB) ERROR: To modify pip, please run the following command: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -m pip install -U pip setuptools wheel ninja cmake [notice] A new release of pip available: 22.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证 CUDA 安装 (rtx5070_env) PS E:\PyTorch_Build\pytorch> nvcc --version # 应显示 CUDA 12.x nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 正确更新 pip 和工具链 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python -m pip install -U pip setuptools wheel ninja cmake Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pip in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (22.3.1) Collecting pip Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b7/3f/945ef7ab14dc4f9d7f40288d2df998d1837ee0888ec3659c813487572faa/pip-25.2-py3-none-any.whl (1.8 MB) Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (65.5.0) Collecting setuptools Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) Collecting wheel Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0b/2c/87f3254fd8ffd29e4c02732eee68a83a1d3c346ae39bc6822dcbcb697f2b/wheel-0.45.1-py3-none-any.whl (72 kB) Collecting ninja Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/45/c0adfbfb0b5895aa18cec400c535b4f7ff3e52536e0403602fc1a23f7de9/ninja-1.13.0-py3-none-win_amd64.whl (309 kB) Collecting cmake Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7c/d0/73cae88d8c25973f2465d5a4457264f95617c16ad321824ed4c243734511/cmake-4.1.0-py3-none-win_amd64.whl (37.6 MB) Installing collected packages: wheel, setuptools, pip, ninja, cmake Attempting uninstall: setuptools Found existing installation: setuptools 65.5.0 Uninstalling setuptools-65.5.0: Successfully uninstalled setuptools-65.5.0 Attempting uninstall: pip Found existing installation: pip 22.3.1 Uninstalling pip-22.3.1: Successfully uninstalled pip-22.3.1 Successfully installed cmake-4.1.0 ninja-1.13.0 pip-25.2 setuptools-80.9.0 wheel-0.45.1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip --version # 应显示 25.2+ pip 25.2 from E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\pip (python 3.10) (rtx5070_env) PS E:\PyTorch_Build\pytorch> cmake --version # 应显示 4.1.0+ cmake version 4.1.0 CMake suite maintained and supported by Kitware (kitware.com/cmake). (rtx5070_env) PS E:\PyTorch_Build\pytorch> ninja --version # 应显示 1.13.0+ 1.13.0.git.kitware.jobserver-pipe-1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置 CUDA 12.1 环境变量 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDA_PATH = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:PATH = "$env:CUDA_PATH\bin;" + $env:PATH (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 验证 CUDA 版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> nvcc --version # 应显示 release 12.1 nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置 cuDNN 路径(根据实际安装位置) (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_INCLUDE_DIR = "$env:CUDA_PATH\include" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CUDNN_LIBRARY = "$env:CUDA_PATH\lib\x64\cudnn.lib" (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install pyyaml numpy typing_extensions Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting pyyaml Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b5/84/0fa4b06f6d6c958d207620fc60005e241ecedceee58931bb20138e1e5776/PyYAML-6.0.2-cp310-cp310-win_amd64.whl (161 kB) Collecting numpy Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a3/dd/4b822569d6b96c39d1215dbae0582fd99954dcbcf0c1a13c61783feaca3f/numpy-2.2.6-cp310-cp310-win_amd64.whl (12.9 MB) Collecting typing_extensions Using cached https://pypi.tuna.tsinghua.edu.cn/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl (44 kB) Installing collected packages: typing_extensions, pyyaml, numpy Successfully installed numpy-2.2.6 pyyaml-6.0.2 typing_extensions-4.15.0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装 GPU 相关依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install mkl mkl-include intel-openmp Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting mkl Using cached https://pypi.tuna.tsinghua.edu.cn/packages/91/ae/025174ee141432b974f97ecd2aea529a3bdb547392bde3dd55ce48fe7827/mkl-2025.2.0-py2.py3-none-win_amd64.whl (153.6 MB) Collecting mkl-include Using cached https://pypi.tuna.tsinghua.edu.cn/packages/06/87/3eee37bf95c6b820b6394ad98e50132798514ecda1b2584c71c2c96b973c/mkl_include-2025.2.0-py2.py3-none-win_amd64.whl (1.3 MB) Collecting intel-openmp Using cached https://pypi.tuna.tsinghua.edu.cn/packages/89/ed/13fed53fcc7ea17ff84095e89e63418df91d4eeefdc74454243d529bf5a3/intel_openmp-2025.2.1-py2.py3-none-win_amd64.whl (34.0 MB) Collecting tbb==2022.* (from mkl) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4e/d2/01e2a93f9c644585088188840bf453f23ed1a2838ec51d5ba1ada1ebca71/tbb-2022.2.0-py3-none-win_amd64.whl (420 kB) Collecting intel-cmplr-lib-ur==2025.2.1 (from intel-openmp) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a8/70/938e81f58886fd4e114d5a5480d98c1396e73e40b7650f566ad0c4395311/intel_cmplr_lib_ur-2025.2.1-py2.py3-none-win_amd64.whl (1.2 MB) Collecting umf==0.11.* (from intel-cmplr-lib-ur==2025.2.1->intel-openmp) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/33/a0/c8d755f08f50ddd99cb4a29a7e950ced7a0903cb72253e57059063609103/umf-0.11.0-py2.py3-none-win_amd64.whl (231 kB) Collecting tcmlib==1.* (from tbb==2022.*->mkl) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/91/7b/e30c461a27b97e0090e4db822eeb1d37b310863241f8c3ee56f68df3e76e/tcmlib-1.4.0-py2.py3-none-win_amd64.whl (370 kB) Installing collected packages: tcmlib, mkl-include, umf, tbb, intel-cmplr-lib-ur, intel-openmp, mkl Successfully installed intel-cmplr-lib-ur-2025.2.1 intel-openmp-2025.2.1 mkl-2025.2.0 mkl-include-2025.2.0 tbb-2022.2.0 tcmlib-1.4.0 umf-0.11.0 (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install pyyaml numpy typing_extensions Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pyyaml in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (6.0.2) Requirement already satisfied: numpy in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2.2.6) Requirement already satisfied: typing_extensions in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (4.15.0) (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装 GPU 相关依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install mkl mkl-include intel-openmp Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: mkl in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: mkl-include in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: intel-openmp in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.1) Requirement already satisfied: tbb==2022.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from mkl) (2022.2.0) Requirement already satisfied: intel-cmplr-lib-ur==2025.2.1 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-openmp) (2025.2.1) Requirement already satisfied: umf==0.11.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-cmplr-lib-ur==2025.2.1->intel-openmp) (0.11.0) Requirement already satisfied: tcmlib==1.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from tbb==2022.*->mkl) (1.4.0) (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置编译参数 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:USE_CUDA=1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:USE_CUDNN=1 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:CMAKE_GENERATOR="Ninja" (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:MAX_JOBS=8 # 根据 CPU 核心数设置 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 运行编译 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py install ` >> --cmake ` >> --cmake-only ` >> --cmake-generator="Ninja" ` >> --verbose ` >> -DCMAKE_CUDA_COMPILER="${env:CUDA_PATH}\bin\nvcc.exe" ` >> -DCUDNN_INCLUDE_DIR="${env:CUDNN_INCLUDE_DIR}" ` >> -DCUDNN_LIBRARY="${env:CUDNN_LIBRARY}" ` >> -DTORCH_CUDA_ARCH_LIST="8.9;9.0;12.0" Building wheel torch-2.9.0a0+git2d31c3d option --cmake-generator not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> python rtx5070_test.py ============================================================ Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\rtx5070_test.py", line 39, in <module> verify_gpu_support() File "E:\PyTorch_Build\pytorch\rtx5070_test.py", line 6, in verify_gpu_support if not torch.cuda.is_available(): AttributeError: module 'torch' has no attribute 'cuda' (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置编译架构参数 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:TORCH_CUDA_ARCH_LIST="8.9;9.0;12.0" (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 使用正确的编译命令 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py install ` >> --cmake ` >> --verbose ` >> -DCMAKE_CUDA_COMPILER="${env:CUDA_PATH}\bin\nvcc.exe" ` >> -DCUDNN_INCLUDE_DIR="${env:CUDNN_INCLUDE_DIR}" ` >> -DCUDNN_LIBRARY="${env:CUDNN_LIBRARY}" ` >> -DCMAKE_GENERATOR="Ninja" ` >> -DUSE_CUDA=ON ` >> -DUSE_CUDNN=ON Building wheel torch-2.9.0a0+git2d31c3d option -D not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> python enhanced_test.py ============================================================ Python 版本: 3.10.10 Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\enhanced_test.py", line 64, in <module> verify_installation() File "E:\PyTorch_Build\pytorch\enhanced_test.py", line 11, in verify_installation print(f"\nPyTorch 版本: {torch.__version__}") AttributeError: module 'torch' has no attribute '__version__' (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 清除之前的构建 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py clean --all Building wheel torch-2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\setuptools\config\_apply_pyprojecttoml.py:82: SetuptoolsDeprecationWarning: `project.license` as a TOML table is deprecated !! ******************************************************************************** Please use a simple string containing a SPDX expression for `project.license`. You can also use `project.license-files`. (Both options available on setuptools>=77.0.0). By 2026-Feb-18, you need to update your project and remove deprecated calls or your builds will no longer be supported. See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! corresp(dist, value, root_dir) usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...] or: setup.py --help [cmd1 cmd2 ...] or: setup.py --help-commands or: setup.py cmd --help error: option --all not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 设置编译架构参数 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $env:TORCH_CUDA_ARCH_LIST="8.9;9.0;12.0" (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 使用正确的编译命令(Windows专用) (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py install ` >> --cmake ` >> --cmake-args="-DCMAKE_CUDA_COMPILER='$env:CUDA_PATH\bin\nvcc.exe' ` >> -DCUDNN_INCLUDE_DIR='$env:CUDNN_INCLUDE_DIR' ` >> -DCUDNN_LIBRARY='$env:CUDNN_LIBRARY' ` >> -DCMAKE_GENERATOR='Ninja' ` >> -DUSE_CUDA=ON ` >> -DUSE_CUDNN=ON" ` >> --verbose ` >> --jobs=$env:MAX_JOBS Building wheel torch-2.9.0a0+git2d31c3d option --cmake-args not recognized (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 使用 PyTorch 官方构建工具 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install -U setuptools wheel Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: setuptools in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (80.9.0) Requirement already satisfied: wheel in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (0.45.1) (rtx5070_env) PS E:\PyTorch_Build\pytorch> python setup.py bdist_wheel Building wheel torch-2.9.0a0+git2d31c3d -- Building version 2.9.0a0+git2d31c3d E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\setuptools\_distutils\_msvccompiler.py:12: UserWarning: _get_vc_env is private; find an alternative (pypa/distutils#340) warnings.warn( -- Checkout nccl release tag: v2.27.5-1 cmake -GNinja -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_GENERATOR=Ninja -DCMAKE_INSTALL_PREFIX=E:\PyTorch_Build\pytorch\torch -DCMAKE_PREFIX_PATH=E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages -DCUDNN_INCLUDE_DIR=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\include -DCUDNN_LIBRARY=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\lib\x64\cudnn.lib -DPython_EXECUTABLE=E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -DPython_NumPy_INCLUDE_DIR=E:\PyTorch_Build\pytorch\rtx5070_env\lib\site-packages\numpy\_core\include -DTORCH_BUILD_VERSION=2.9.0a0+git2d31c3d -DTORCH_CUDA_ARCH_LIST=8.9;9.0;12.0 -DUSE_CUDA=1 -DUSE_CUDNN=1 -DUSE_NUMPY=True E:\PyTorch_Build\pytorch CMake Deprecation Warning at CMakeLists.txt:18 (cmake_policy): The OLD behavior for policy CMP0126 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. -- The CXX compiler identification is MSVC 19.44.35215.0 -- The C compiler identification is MSVC 19.44.35215.0 -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe - skipped -- Detecting C compile features -- Detecting C compile features - done -- Not forcing any particular BLAS to be found CMake Warning at CMakeLists.txt:425 (message): TensorPipe cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:427 (message): KleidiAI cannot be used on Windows. Set it to OFF CMake Warning at CMakeLists.txt:439 (message): Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. Please run command 'conda install -c conda-forge libuv=1.39' to install libuv. -- Performing Test C_HAS_AVX_1 -- Performing Test C_HAS_AVX_1 - Success -- Performing Test C_HAS_AVX2_1 -- Performing Test C_HAS_AVX2_1 - Success -- Performing Test C_HAS_AVX512_1 -- Performing Test C_HAS_AVX512_1 - Success -- Performing Test CXX_HAS_AVX_1 -- Performing Test CXX_HAS_AVX_1 - Success -- Performing Test CXX_HAS_AVX2_1 -- Performing Test CXX_HAS_AVX2_1 - Success -- Performing Test CXX_HAS_AVX512_1 -- Performing Test CXX_HAS_AVX512_1 - Success -- Current compiler supports avx2 extension. Will build perfkernels. -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_VISIBILITY - Failed -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY -- Performing Test COMPILER_SUPPORTS_HIDDEN_INLINE_VISIBILITY - Failed -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- Compiler does not support SVE extension. Will not build perfkernels. CMake Warning at CMakeLists.txt:845 (message): x64 operating system is required for FBGEMM. Not compiling with FBGEMM. Turn this warning off by USE_FBGEMM=OFF. -- Performing Test HAS/UTF_8 -- Performing Test HAS/UTF_8 - Success -- Found CUDA: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 (found version "13.0") -- The CUDA compiler identification is NVIDIA 13.0.48 with host compiler MSVC 19.44.35215.0 -- Detecting CUDA compiler ABI info -- Detecting CUDA compiler ABI info - done -- Check for working CUDA compiler: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe - skipped -- Detecting CUDA compile features -- Detecting CUDA compile features - done -- Found CUDAToolkit: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include (found version "13.0.48") -- PyTorch: CUDA detected: 13.0 -- PyTorch: CUDA nvcc is: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- PyTorch: CUDA toolkit directory: E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- PyTorch: Header version is: 13.0 -- Found Python: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter CMake Warning at cmake/public/cuda.cmake:140 (message): Failed to compute shorthash for libnvrtc.so Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDNN (missing: CUDNN_LIBRARY_PATH CUDNN_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:201 (message): Cannot find cuDNN library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUSPARSELT (missing: CUSPARSELT_LIBRARY_PATH CUSPARSELT_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:226 (message): Cannot find cuSPARSELt library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Could NOT find CUDSS (missing: CUDSS_LIBRARY_PATH CUDSS_INCLUDE_PATH) CMake Warning at cmake/public/cuda.cmake:242 (message): Cannot find CUDSS library. Turning the option off Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- USE_CUFILE is set to 0. Compiling without cuFile support CMake Warning at cmake/public/cuda.cmake:317 (message): pytorch is not compatible with `CMAKE_CUDA_ARCHITECTURES` and will ignore its value. Please configure `TORCH_CUDA_ARCH_LIST` instead. Call Stack (most recent call first): cmake/Dependencies.cmake:44 (include) CMakeLists.txt:873 (include) -- Added CUDA NVCC flags for: -gencode;arch=compute_89,code=sm_89;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_120,code=sm_120 CMake Warning at cmake/Dependencies.cmake:95 (message): Not compiling with XPU. Could NOT find SYCL. Suppress this warning with -DUSE_XPU=OFF. Call Stack (most recent call first): CMakeLists.txt:873 (include) -- Building using own protobuf under third_party per request. -- Use custom protobuf build. CMake Warning at cmake/ProtoBuf.cmake:37 (message): Ancient protobuf forces CMake compatibility Call Stack (most recent call first): cmake/ProtoBuf.cmake:87 (custom_protobuf_find) cmake/Dependencies.cmake:107 (include) CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/protobuf/cmake/CMakeLists.txt:2 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- -- 3.13.0.0 -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed -- Looking for pthread_create in pthreads -- Looking for pthread_create in pthreads - not found -- Looking for pthread_create in pthread -- Looking for pthread_create in pthread - not found -- Found Threads: TRUE -- Caffe2 protobuf include directory: $<BUILD_INTERFACE:E:/PyTorch_Build/pytorch/third_party/protobuf/src>$<INSTALL_INTERFACE:include> -- Trying to find preferred BLAS backend of choice: MKL -- MKL_THREADING = OMP -- Looking for sys/types.h -- Looking for sys/types.h - found -- Looking for stdint.h -- Looking for stdint.h - found -- Looking for stddef.h -- Looking for stddef.h - found -- Check size of void* -- Check size of void* - done -- MKL_THREADING = OMP CMake Warning at cmake/Dependencies.cmake:213 (message): MKL could not be found. Defaulting to Eigen Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Warning at cmake/Dependencies.cmake:279 (message): Preferred BLAS (MKL) cannot be found, now searching for a general BLAS library Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Looking for sgemm_ -- Looking for sgemm_ - not found -- Cannot find a library with BLAS API. Not using BLAS. -- Using pocketfft in directory: E:/PyTorch_Build/pytorch/third_party/pocketfft/ CMake Deprecation Warning at third_party/pthreadpool/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/FXdiv/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/cpuinfo/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- The ASM compiler identification is MSVC CMake Warning (dev) at rtx5070_env/Lib/site-packages/cmake/data/share/cmake-4.1/Modules/CMakeDetermineASMCompiler.cmake:234 (message): Policy CMP194 is not set: MSVC is not an assembler for language ASM. Run "cmake --help-policy CMP194" for policy details. Use the cmake_policy command to set the policy and suppress this warning. Call Stack (most recent call first): third_party/XNNPACK/CMakeLists.txt:18 (PROJECT) This warning is for project developers. Use -Wno-dev to suppress it. -- Found assembler: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Building for XNNPACK_TARGET_PROCESSOR: x86_64 -- Generating microkernels.cmake Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avx256vnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c (1th function) Duplicate microkernel definition: src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-avxvnni.c and src\qs8-qc4w-packw\gen\qs8-qc4w-packw-x8c8-gemm-goi-scalar.c No microkernel found in src\reference\binary-elementwise.cc No microkernel found in src\reference\packing.cc No microkernel found in src\reference\unary-elementwise.cc -- Found Git: E:/Program Files/Git/cmd/git.exe (found version "2.51.0.windows.1") -- Google Benchmark version: v1.9.3, normalized to 1.9.3 -- Looking for shm_open in rt -- Looking for shm_open in rt - not found -- Performing Test HAVE_CXX_FLAG_WX -- Performing Test HAVE_CXX_FLAG_WX - Success -- Compiling and running to test HAVE_STD_REGEX -- Performing Test HAVE_STD_REGEX -- success -- Compiling and running to test HAVE_GNU_POSIX_REGEX -- Performing Test HAVE_GNU_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_POSIX_REGEX -- Performing Test HAVE_POSIX_REGEX -- failed to compile -- Compiling and running to test HAVE_STEADY_CLOCK -- Performing Test HAVE_STEADY_CLOCK -- success -- Compiling and running to test HAVE_PTHREAD_AFFINITY -- Performing Test HAVE_PTHREAD_AFFINITY -- failed to compile CMake Deprecation Warning at third_party/ittapi/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning at cmake/Dependencies.cmake:749 (message): FP16 is only cmake-2.8 compatible Call Stack (most recent call first): CMakeLists.txt:873 (include) CMake Deprecation Warning at third_party/FP16/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Deprecation Warning at third_party/psimd/CMakeLists.txt:1 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. -- Using third party subdirectory Eigen. -- Found Python: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter Development.Module NumPy -- Using third_party/pybind11. -- pybind11 include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/pybind11/include -- Could NOT find OpenTelemetryApi (missing: OpenTelemetryApi_INCLUDE_DIRS) -- Using third_party/opentelemetry-cpp. -- opentelemetry api include dirs: E:/PyTorch_Build/pytorch/cmake/../third_party/opentelemetry-cpp/api/include -- Could NOT find MPI_C (missing: MPI_C_LIB_NAMES MPI_C_HEADER_DIR MPI_C_WORKS) -- Could NOT find MPI_CXX (missing: MPI_CXX_LIB_NAMES MPI_CXX_HEADER_DIR MPI_CXX_WORKS) -- Could NOT find MPI (missing: MPI_C_FOUND MPI_CXX_FOUND) CMake Warning at cmake/Dependencies.cmake:894 (message): Not compiling with MPI. Suppress this warning with -DUSE_MPI=OFF Call Stack (most recent call first): CMakeLists.txt:873 (include) -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- MKL_THREADING = OMP -- Check OMP with lib C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib and flags -openmp:experimental -- Found OpenMP_C: -openmp:experimental -- Found OpenMP_CXX: -openmp:experimental -- Found OpenMP: TRUE -- Adding OpenMP CXX_FLAGS: -openmp:experimental -- Will link against OpenMP libraries: C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/lib/x64/libomp.lib -- Found nvtx3: E:/PyTorch_Build/pytorch/third_party/NVTX/c/include -- ROCM_PATH environment variable is not set and C:/opt/rocm does not exist. Building without ROCm support. -- Found Python3: E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe (found version "3.10.10") found components: Interpreter -- ONNX_PROTOC_EXECUTABLE: $<TARGET_FILE:protobuf::protoc> -- Protobuf_VERSION: Protobuf_VERSION_NOTFOUND Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-operators_onnx_torch-ml.proto Generated: E:/PyTorch_Build/pytorch/build/third_party/onnx/onnx/onnx-data_onnx_torch.proto -- -- ******** Summary ******** -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/rtx5070_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler version : 19.44.35215.0 -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL /EHsc /wd26812 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1 -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages;E:/Program Files/NVIDIA/CUNND/v9.12;E:\Program Files\NVIDIA\CUNND\v9.12;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- CMAKE_MODULE_PATH : E:/PyTorch_Build/pytorch/cmake/Modules;E:/PyTorch_Build/pytorch/cmake/public/../Modules_CUDA_fix -- -- ONNX version : 1.18.0 -- ONNX NAMESPACE : onnx_torch -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_DISABLE_STATIC_REGISTRATION : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- BUILD_SHARED_LIBS : OFF -- -- Protobuf compiler : $<TARGET_FILE:protobuf::protoc> -- Protobuf includes : -- Protobuf libraries : -- ONNX_BUILD_PYTHON : OFF -- Found CUDA with FP16 support, compiling with torch.cuda.HalfTensor -- Adding -DNDEBUG to compile flags -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 -- Checking prototype magma_get_sgeqrf_nb for MAGMA_V2 - False -- MAGMA not found. Compiling without MAGMA support -- Could not find hardware support for NEON on this machine. -- No OMAP3 processor on this machine. -- No OMAP4 processor on this machine. -- MKL_THREADING = OMP -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core - libiomp5md] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_intel_thread - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_intel_thread - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_sequential - mkl_core] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_sequential - mkl_core] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - libiomp5md - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - libiomp5md - pthread] -- Library mkl_intel: not found -- Checking for [mkl_intel_lp64 - mkl_core - pthread] -- Library mkl_intel_lp64: not found -- Checking for [mkl_intel - mkl_core - pthread] -- Library mkl_intel: not found -- Checking for [mkl - guide - pthread - m] -- Library mkl: not found -- MKL library not found -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Checking for [Accelerate] -- Library Accelerate: BLAS_Accelerate_LIBRARY-NOTFOUND -- Checking for [vecLib] -- Library vecLib: BLAS_vecLib_LIBRARY-NOTFOUND -- Checking for [flexiblas] -- Library flexiblas: BLAS_flexiblas_LIBRARY-NOTFOUND -- Checking for [openblas] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [openblas - pthread - m - gomp] -- Library openblas: BLAS_openblas_LIBRARY-NOTFOUND -- Checking for [libopenblas] -- Library libopenblas: BLAS_libopenblas_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [goto2 - gfortran - pthread] -- Library goto2: BLAS_goto2_LIBRARY-NOTFOUND -- Checking for [acml - gfortran] -- Library acml: BLAS_acml_LIBRARY-NOTFOUND -- Checking for [blis] -- Library blis: BLAS_blis_LIBRARY-NOTFOUND -- Could NOT find Atlas (missing: Atlas_CBLAS_INCLUDE_DIR Atlas_CLAPACK_INCLUDE_DIR Atlas_CBLAS_LIBRARY Atlas_BLAS_LIBRARY Atlas_LAPACK_LIBRARY) -- Checking for [ptf77blas - atlas - gfortran] -- Library ptf77blas: BLAS_ptf77blas_LIBRARY-NOTFOUND -- Checking for [] -- Cannot find a library with BLAS API. Not using BLAS. -- LAPACK requires BLAS -- Cannot find a library with LAPACK API. Not using LAPACK. disabling ROCM because NOT USE_ROCM is set -- MIOpen not found. Compiling without MIOpen support disabling MKLDNN because USE_MKLDNN is not set -- {fmt} version: 11.2.0 -- Build type: Release -- Using Kineto with CUPTI support -- Configuring Kineto dependency: -- KINETO_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto -- KINETO_BUILD_TESTS = OFF -- KINETO_LIBRARY_TYPE = static -- CUDA_SOURCE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA_INCLUDE_DIRS = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- CUDA_cupti_LIBRARY = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/lib64/cupti.lib -- Found CUPTI CMake Deprecation Warning at third_party/kineto/libkineto/CMakeLists.txt:7 (cmake_minimum_required): Compatibility with CMake < 3.10 will be removed from a future version of CMake. Update the VERSION argument <min> value. Or, use the <min>...<max> syntax to tell CMake that the project requires at least <min> but has been updated to work with policies introduced by <max> or earlier. CMake Warning (dev) at third_party/kineto/libkineto/CMakeLists.txt:15 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonInterp: E:/PyTorch_Build/pytorch/rtx5070_env/Scripts/python.exe (found version "3.10.10") -- ROCM_SOURCE_DIR = -- Kineto: FMT_SOURCE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt -- Kineto: FMT_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/fmt/include -- CUPTI_INCLUDE_DIR = E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/extras/CUPTI/include -- ROCTRACER_INCLUDE_DIR = /include/roctracer -- DYNOLOG_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog/ -- IPCFABRIC_INCLUDE_DIR = E:/PyTorch_Build/pytorch/third_party/kineto/libkineto/third_party/dynolog//dynolog/src/ipcfabric/ -- Configured Kineto -- Performing Test HAS/WD4624 -- Performing Test HAS/WD4624 - Success -- Performing Test HAS/WD4068 -- Performing Test HAS/WD4068 - Success -- Performing Test HAS/WD4067 -- Performing Test HAS/WD4067 - Success -- Performing Test HAS/WD4267 -- Performing Test HAS/WD4267 - Success -- Performing Test HAS/WD4661 -- Performing Test HAS/WD4661 - Success -- Performing Test HAS/WD4717 -- Performing Test HAS/WD4717 - Success -- Performing Test HAS/WD4244 -- Performing Test HAS/WD4244 - Success -- Performing Test HAS/WD4804 -- Performing Test HAS/WD4804 - Success -- Performing Test HAS/WD4273 -- Performing Test HAS/WD4273 - Success -- Performing Test HAS_WNO_STRINGOP_OVERFLOW -- Performing Test HAS_WNO_STRINGOP_OVERFLOW - Failed -- -- Architecture: x64 -- Use the C++ compiler to compile (MI_USE_CXX=ON) -- -- Library name : mimalloc -- Version : 2.2.4 -- Build type : release -- C++ Compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- Compiler flags : /Zc:__cplusplus -- Compiler defines : MI_CMAKE_BUILD_TYPE=release;MI_BUILD_RELEASE -- Link libraries : psapi;shell32;user32;advapi32;bcrypt -- Build targets : static -- CMake Error at CMakeLists.txt:1264 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch/headeronly does not contain a CMakeLists.txt file. -- don't use NUMA -- Looking for backtrace -- Looking for backtrace - not found -- Could NOT find Backtrace (missing: Backtrace_LIBRARY Backtrace_INCLUDE_DIR) -- headers outputs: torch\csrc\inductor\aoti_torch\generated\c_shim_cpu.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_cuda.h not found torch\csrc\inductor\aoti_torch\generated\c_shim_aten.h not found -- sources outputs: -- declarations_yaml outputs: -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT -- Performing Test COMPILER_SUPPORTS_NO_AVX256_SPLIT - Failed -- Using ATen parallel backend: OMP -- Could NOT find OpenSSL, try to set the path to OpenSSL root folder in the system variable OPENSSL_ROOT_DIR (missing: OPENSSL_CRYPTO_LIBRARY OPENSSL_INCLUDE_DIR) -- Check size of long double -- Check size of long double - done -- Performing Test COMPILER_SUPPORTS_FLOAT128 -- Performing Test COMPILER_SUPPORTS_FLOAT128 - Failed -- Performing Test COMPILER_SUPPORTS_SSE2 -- Performing Test COMPILER_SUPPORTS_SSE2 - Success -- Performing Test COMPILER_SUPPORTS_SSE4 -- Performing Test COMPILER_SUPPORTS_SSE4 - Success -- Performing Test COMPILER_SUPPORTS_AVX -- Performing Test COMPILER_SUPPORTS_AVX - Success -- Performing Test COMPILER_SUPPORTS_FMA4 -- Performing Test COMPILER_SUPPORTS_FMA4 - Success -- Performing Test COMPILER_SUPPORTS_AVX2 -- Performing Test COMPILER_SUPPORTS_AVX2 - Success -- Performing Test COMPILER_SUPPORTS_AVX512F -- Performing Test COMPILER_SUPPORTS_AVX512F - Success -- Found OpenMP_C: -openmp:experimental (found version "2.0") -- Found OpenMP_CXX: -openmp:experimental (found version "2.0") -- Found OpenMP_CUDA: -openmp (found version "2.0") -- Found OpenMP: TRUE (found version "2.0") -- Performing Test COMPILER_SUPPORTS_OPENMP -- Performing Test COMPILER_SUPPORTS_OPENMP - Success -- Performing Test COMPILER_SUPPORTS_OMP_SIMD -- Performing Test COMPILER_SUPPORTS_OMP_SIMD - Failed -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES -- Performing Test COMPILER_SUPPORTS_WEAK_ALIASES - Failed -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH -- Performing Test COMPILER_SUPPORTS_BUILTIN_MATH - Failed -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM -- Performing Test COMPILER_SUPPORTS_SYS_GETRANDOM - Failed -- Configuring build for SLEEF-v3.8.0 Target system: Windows-10.0.26100 Target processor: AMD64 Host system: Windows-10.0.26100 Host processor: AMD64 Detected C compiler: MSVC @ C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe CMake: 4.1.0 Make program: E:/PyTorch_Build/pytorch/rtx5070_env/Scripts/ninja.exe -- Using option `/D_CRT_SECURE_NO_WARNINGS /D_CRT_NONSTDC_NO_DEPRECATE ` to compile libsleef -- Building shared libs : OFF -- Building static test bins: OFF -- MPFR : LIB_MPFR-NOTFOUND -- GMP : LIBGMP-NOTFOUND -- RT : -- FFTW3 : LIBFFTW3-NOTFOUND -- OPENSSL : -- SDE : SDE_COMMAND-NOTFOUND -- COMPILER_SUPPORTS_OPENMP : FALSE AT_INSTALL_INCLUDE_DIR include/ATen/core core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/aten_interned_strings.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/enum_tag.h core header install: E:/PyTorch_Build/pytorch/build/aten/src/ATen/core/TensorBody.h -- NVSHMEM not found, not building with NVSHMEM support. CMake Error at torch/CMakeLists.txt:3 (add_subdirectory): The source directory E:/PyTorch_Build/pytorch/torch/csrc does not contain a CMakeLists.txt file. CMake Warning at CMakeLists.txt:1285 (message): Generated cmake files are only fully tested if one builds with system glog, gflags, and protobuf. Other settings may generate files that are not well tested. -- -- ******** Summary ******** -- General: -- CMake version : 4.1.0 -- CMake command : E:/PyTorch_Build/pytorch/rtx5070_env/Lib/site-packages/cmake/data/bin/cmake.exe -- System : Windows -- C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio/2022/BuildTools/VC/Tools/MSVC/14.44.35207/bin/Hostx64/x64/cl.exe -- C++ compiler id : MSVC -- C++ compiler version : 19.44.35215.0 -- Using ccache if found : OFF -- CXX flags : /DWIN32 /D_WINDOWS /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273 -- Shared LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Static LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Module LD flags : /machine:x64 /ignore:4049 /ignore:4217 /ignore:4099 -- Build type : Release -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;_CRT_SECURE_NO_DEPRECATE=1;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS;EXPORT_AOTI_FUNCTIONS;WIN32_LEAN_AND_MEAN;_UCRT_LEGACY_INFINITY;NOMINMAX;USE_MIMALLOC -- CMAKE_PREFIX_PATH : E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages;E:/Program Files/NVIDIA/CUNND/v9.12;E:\Program Files\NVIDIA\CUNND\v9.12;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CMAKE_INSTALL_PREFIX : E:/PyTorch_Build/pytorch/torch -- USE_GOLD_LINKER : OFF -- -- TORCH_VERSION : 2.9.0 -- BUILD_STATIC_RUNTIME_BENCHMARK: OFF -- BUILD_BINARY : OFF -- BUILD_CUSTOM_PROTOBUF : ON -- Link local protobuf : ON -- BUILD_PYTHON : True -- Python version : 3.10.10 -- Python executable : E:\PyTorch_Build\pytorch\rtx5070_env\Scripts\python.exe -- Python library : E:/Python310/libs/python310.lib -- Python includes : E:/Python310/Include -- Python site-package : E:\PyTorch_Build\pytorch\rtx5070_env\Lib\site-packages -- BUILD_SHARED_LIBS : ON -- CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF -- BUILD_TEST : True -- BUILD_JNI : OFF -- BUILD_MOBILE_AUTOGRAD : OFF -- BUILD_LITE_INTERPRETER: OFF -- INTERN_BUILD_MOBILE : -- TRACING_BASED : OFF -- USE_BLAS : 0 -- USE_LAPACK : 0 -- USE_ASAN : OFF -- USE_TSAN : OFF -- USE_CPP_CODE_COVERAGE : OFF -- USE_CUDA : 1 -- CUDA static link : OFF -- USE_CUDNN : OFF -- USE_CUSPARSELT : OFF -- USE_CUDSS : OFF -- USE_CUFILE : OFF -- CUDA version : 13.0 -- USE_FLASH_ATTENTION : OFF -- USE_MEM_EFF_ATTENTION : ON -- CUDA root directory : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0 -- CUDA library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cuda.lib -- cudart library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart.lib -- cublas library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cublas.lib -- cufft library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cufft.lib -- curand library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/curand.lib -- cusparse library : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cusparse.lib -- nvrtc : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/nvrtc.lib -- CUDA include path : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/include -- NVCC executable : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA compiler : E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/bin/nvcc.exe -- CUDA flags : -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS -Xcompiler /Zc:__cplusplus -Xcompiler /w -w -Xcompiler /FS -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch --use-local-env -gencode arch=compute_89,code=sm_89 -gencode arch=compute_90,code=sm_90 -gencode arch=compute_120,code=sm_120 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --Werror cross-execution-space-call --no-host-device-move-forward --expt-relaxed-constexpr --expt-extended-lambda -Xcompiler=/wd4819,/wd4503,/wd4190,/wd4244,/wd4251,/wd4275,/wd4522 -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -- CUDA host compiler : -- CUDA --device-c : OFF -- USE_TENSORRT : -- USE_XPU : OFF -- USE_ROCM : OFF -- BUILD_NVFUSER : -- USE_EIGEN_FOR_BLAS : ON -- USE_EIGEN_FOR_SPARSE : OFF -- USE_FBGEMM : OFF -- USE_KINETO : ON -- USE_GFLAGS : OFF -- USE_GLOG : OFF -- USE_LITE_PROTO : OFF -- USE_PYTORCH_METAL : OFF -- USE_PYTORCH_METAL_EXPORT : OFF -- USE_MPS : OFF -- CAN_COMPILE_METAL : -- USE_MKL : OFF -- USE_MKLDNN : OFF -- USE_UCC : OFF -- USE_ITT : ON -- USE_XCCL : OFF -- USE_NCCL : OFF -- Found NVSHMEM : -- USE_NNPACK : OFF -- USE_NUMPY : ON -- USE_OBSERVERS : ON -- USE_OPENCL : OFF -- USE_OPENMP : ON -- USE_MIMALLOC : ON -- USE_MIMALLOC_ON_MKL : OFF -- USE_VULKAN : OFF -- USE_PROF : OFF -- USE_PYTORCH_QNNPACK : OFF -- USE_XNNPACK : ON -- USE_DISTRIBUTED : OFF -- Public Dependencies : -- Private Dependencies : Threads::Threads;pthreadpool;cpuinfo;XNNPACK;microkernels-prod;ittnotify;fp16;caffe2::openmp;fmt::fmt-header-only;kineto -- Public CUDA Deps. : -- Private CUDA Deps. : caffe2::curand;caffe2::cufft;caffe2::cublas;fmt::fmt-header-only;E:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v13.0/lib/x64/cudart_static.lib;CUDA::cusparse;CUDA::cufft;CUDA::cusolver;ATEN_CUDA_FILES_GEN_LIB -- USE_COREML_DELEGATE : OFF -- BUILD_LAZY_TS_BACKEND : ON -- USE_ROCM_KERNEL_ASSERT : OFF -- Performing Test HAS_WMISSING_PROTOTYPES -- Performing Test HAS_WMISSING_PROTOTYPES - Failed -- Performing Test HAS_WERROR_MISSING_PROTOTYPES -- Performing Test HAS_WERROR_MISSING_PROTOTYPES - Failed -- Configuring incomplete, errors occurred! (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装生成的包 (rtx5070_env) PS E:\PyTorch_Build\pytorch> $wheelPath = Get-ChildItem dist\*.whl | Select-Object -First 1 Get-ChildItem: Cannot find path 'E:\PyTorch_Build\pytorch\dist' because it does not exist. (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install $wheelPath --force-reinstall --no-deps ERROR: You must give at least one requirement to install (see "pip help install") (rtx5070_env) PS E:\PyTorch_Build\pytorch> python diagnostic_test.py ================================================== CUDA Toolkit 验证: ✅ NVCC 版本: nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 ✅ NVIDIA-SMI 输出: Mon Sep 1 20:54:10 2025 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 580.97 Driver Version: 580.97 CUDA Version: 13.0 | +-----------------------------------------+------------------------+----------------------+ | GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 5070 WDDM | 00000000:01:00.0 On | N/A | | 0% 35C P3 16W / 250W | 1328MiB / 12227MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 1124 C+G ...yb3d8bbwe\WindowsTerminal.exe N/A | | 0 N/A N/A 1288 C+G ...les\Tencent\Weixin\Weixin.exe N/A | | 0 N/A N/A 1776 C+G C:\Windows\System32\dwm.exe N/A | | 0 N/A N/A 2272 C+G ...t\Edge\Application\msedge.exe N/A | | 0 N/A N/A 3268 C+G ...em32\ApplicationFrameHost.exe N/A | | 0 N/A N/A 7860 C+G C:\Windows\explorer.exe N/A | | 0 N/A N/A 8004 C+G ...indows\System32\ShellHost.exe N/A | | 0 N/A N/A 8156 C+G ...0.3405.125\msedgewebview2.exe N/A | | 0 N/A N/A 8852 C+G ..._cw5n1h2txyewy\SearchHost.exe N/A | | 0 N/A N/A 8876 C+G ...y\StartMenuExperienceHost.exe N/A | | 0 N/A N/A 10540 C+G ...0.3405.125\msedgewebview2.exe N/A | | 0 N/A N/A 12380 C+G ...5n1h2txyewy\TextInputHost.exe N/A | | 0 N/A N/A 15340 C+G ...acted\runtime\WeChatAppEx.exe N/A | | 0 N/A N/A 18600 C+G ...ntrolPanel\SystemSettings.exe N/A | +-----------------------------------------------------------------------------------------+ ================================================== ❌ 严重错误发生: Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\diagnostic_test.py", line 116, in <module> check_cuda_toolkit() File "E:\PyTorch_Build\pytorch\diagnostic_test.py", line 21, in check_cuda_toolkit cuda_path = os.environ.get('CUDA_PATH', '未设置') NameError: name 'os' is not defined 按 Enter 键退出... (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 卸载现有版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip uninstall -y torch torchvision torchaudio WARNING: Skipping torch as it is not installed. WARNING: Skipping torchvision as it is not installed. WARNING: Skipping torchaudio as it is not installed. (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装支持 RTX 5070 的预编译版本 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install --pre torch torchvision torchaudio ` >> --index-url https://download.pytorch.org/whl/nightly/cu121 ` >> --no-deps Looking in indexes: https://download.pytorch.org/whl/nightly/cu121 Collecting torch Using cached https://download.pytorch.org/whl/nightly/cu121/torch-2.6.0.dev20241112%2Bcu121-cp310-cp310-win_amd64.whl (2456.2 MB) Collecting torchvision Using cached https://download.pytorch.org/whl/nightly/cu121/torchvision-0.20.0.dev20241112%2Bcu121-cp310-cp310-win_amd64.whl (6.2 MB) Collecting torchaudio Using cached https://download.pytorch.org/whl/nightly/cu121/torchaudio-2.5.0.dev20241112%2Bcu121-cp310-cp310-win_amd64.whl (4.2 MB) Installing collected packages: torchaudio, torchvision, torch Successfully installed torch-2.6.0.dev20241112+cu121 torchaudio-2.5.0.dev20241112+cu121 torchvision-0.20.0.dev20241112+cu121 (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 安装必要依赖 (rtx5070_env) PS E:\PyTorch_Build\pytorch> pip install pyyaml numpy typing_extensions mkl mkl-include intel-openmp Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Requirement already satisfied: pyyaml in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (6.0.2) Requirement already satisfied: numpy in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2.2.6) Requirement already satisfied: typing_extensions in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (4.15.0) Requirement already satisfied: mkl in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: mkl-include in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.0) Requirement already satisfied: intel-openmp in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (2025.2.1) Requirement already satisfied: tbb==2022.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from mkl) (2022.2.0) Requirement already satisfied: intel-cmplr-lib-ur==2025.2.1 in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-openmp) (2025.2.1) Requirement already satisfied: umf==0.11.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from intel-cmplr-lib-ur==2025.2.1->intel-openmp) (0.11.0) Requirement already satisfied: tcmlib==1.* in e:\pytorch_build\pytorch\rtx5070_env\lib\site-packages (from tbb==2022.*->mkl) (1.4.0) (rtx5070_env) PS E:\PyTorch_Build\pytorch> (rtx5070_env) PS E:\PyTorch_Build\pytorch> # 执行诊断测试 (rtx5070_env) PS E:\PyTorch_Build\pytorch> python diagnostic_test.py ================================================== CUDA Toolkit 验证: ✅ NVCC 版本: nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2025 NVIDIA Corporation Built on Wed_Jul_16_20:06:48_Pacific_Daylight_Time_2025 Cuda compilation tools, release 13.0, V13.0.48 Build cuda_13.0.r13.0/compiler.36260728_0 ✅ NVIDIA-SMI 输出: Mon Sep 1 20:55:52 2025 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 580.97 Driver Version: 580.97 CUDA Version: 13.0 | +-----------------------------------------+------------------------+----------------------+ | GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 5070 WDDM | 00000000:01:00.0 On | N/A | | 0% 35C P3 19W / 250W | 1346MiB / 12227MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 1124 C+G ...yb3d8bbwe\WindowsTerminal.exe N/A | | 0 N/A N/A 1288 C+G ...les\Tencent\Weixin\Weixin.exe N/A | | 0 N/A N/A 1776 C+G C:\Windows\System32\dwm.exe N/A | | 0 N/A N/A 2272 C+G ...t\Edge\Application\msedge.exe N/A | | 0 N/A N/A 3268 C+G ...em32\ApplicationFrameHost.exe N/A | | 0 N/A N/A 7860 C+G C:\Windows\explorer.exe N/A | | 0 N/A N/A 8004 C+G ...indows\System32\ShellHost.exe N/A | | 0 N/A N/A 8156 C+G ...0.3405.125\msedgewebview2.exe N/A | | 0 N/A N/A 8852 C+G ..._cw5n1h2txyewy\SearchHost.exe N/A | | 0 N/A N/A 8876 C+G ...y\StartMenuExperienceHost.exe N/A | | 0 N/A N/A 10540 C+G ...0.3405.125\msedgewebview2.exe N/A | | 0 N/A N/A 12380 C+G ...5n1h2txyewy\TextInputHost.exe N/A | | 0 N/A N/A 15340 C+G ...acted\runtime\WeChatAppEx.exe N/A | | 0 N/A N/A 18600 C+G ...ntrolPanel\SystemSettings.exe N/A | +-----------------------------------------------------------------------------------------+ ================================================== ❌ 严重错误发生: Traceback (most recent call last): File "E:\PyTorch_Build\pytorch\diagnostic_test.py", line 116, in <module> check_cuda_toolkit() File "E:\PyTorch_Build\pytorch\diagnostic_test.py", line 21, in check_cuda_toolkit cuda_path = os.environ.get('CUDA_PATH', '未设置') NameError: name 'os' is not defined 按 Enter 键退出... (rtx5070_env) PS E:\PyTorch_Build\pytorch>
最新发布
09-02
<think>好的,我现在需要解决用户关于“bad_function_call was thrown in -fno-exceptions mode”的问题。首先,我得理解这个错误出现的背景。用户可能在C++编程中遇到了这个异常,但编译时使用了-fno-exceptions选项,导致异常处理被禁用。 接下来,我需要回忆C++中的异常处理机制。当使用std::function调用一个空的可调用对象时,标准库会抛出std::bad_function_call异常。但是,如果编译时禁用了异常(比如GCC/Clang的-fno-exceptions),程序就无法抛出或捕获异常,这时就会导致编译错误或运行时问题。 然后,我需要分析用户的问题。用户可能在代码中使用了std::function但没有正确初始化,或者在禁用异常的情况下如何处理这种情况。可能的解决方案包括避免使用异常,改用其他错误处理方式,比如返回错误码或使用std::optional,或者检查std::function是否为空再调用。 还要考虑用户是否了解-fno-exceptions的影响,可能需要解释该选项的作用,以及为什么在这种情况下异常不能被抛出。同时,需要提供具体的代码示例,说明如何修改以避免异常,比如使用if条件检查function是否有效,或者调整编译选项允许异常。 最后,要确保回答结构清晰,分步骤解释问题原因和解决方案,并给出实际的代码例子,帮助用户理解和应用解决方法。还要注意使用正确的中文术语,保持语言自然,避免技术术语的混淆。</think>你的问题涉及C++编程中`std::bad_function_call`异常与`-fno-exceptions`编译选项的冲突。以下是逐步解释和解决方案: --- ### 问题背景 `std::bad_function_call`是C++标准库中定义的异常类型,当尝试调用一个未绑定实际可调用对象的`std::function`时会抛出此异常。例如: ```cpp #include <functional> std::function<void()> func; func(); // 抛出 bad_function_call ``` 但在使用`-fno-exceptions`编译选项(禁用C++异常机制)时,代码将无法正常编译或运行。 --- ### 原因分析 1. **`-fno-exceptions`的作用** 该编译选项会禁用C++的异常处理机制: - 禁止`throw`关键字抛出异常 - 禁止`try/catch`块捕获异常 - 标准库中依赖异常的逻辑会失效 2. **与`std::bad_function_call`的冲突** 标准库默认实现中,调用空的`std::function`会通过`throw bad_function_call()`触发异常。但在禁用异常的情况下,此代码路径无法执行,可能导致: - **编译错误**:编译器拒绝包含`throw`的代码 - **未定义行为**:若绕过编译检查直接调用空函数对象 --- ### 解决方案 #### 方法1:避免触发异常 在使用`std::function`前检查有效性: ```cpp #include <functional> std::function<void()> func; if (func) { // 显式检查是否可调用 func(); } else { // 错误处理(如日志输出、返回错误码等) } ``` #### 方法2:替换异常处理机制 改用返回值或回调函数传递错误: ```cpp bool safe_call(const std::function<void()>& func) { if (!func) return false; func(); return true; } // 调用示例 if (!safe_call(func)) { std::cerr << "调用失败" << std::endl; } ``` #### 方法3:修改编译选项(不推荐) 启用异常机制(移除`-fno-exceptions`),但会牺牲禁用异常带来的性能优化和代码体积优势: ```bash g++ -std=c++17 your_code.cpp -o output ``` --- ### 深入理解 - **禁用异常的典型场景**:嵌入式系统、高性能计算、对二进制体积敏感的项目 - **替代方案**:使用`std::optional`包装返回值,或通过`std::expected`(C++23)传递错误信息 --- ### 示例代码(禁用异常环境) ```cpp #include <functional> #include <iostream> int main() { std::function<void()> func; // 替代异常的处理方式 if (!func) { std::cerr << "错误:空函数对象" << std::endl; return 1; } func(); return 0; } ``` 通过显式检查规避异常,可以在`-fno-exceptions`模式下安全使用`std::function`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值