tensorflow的Virtualenv安装方式安装

本文详细介绍了在Ubuntu系统中通过virtualenv环境安装TensorFlow的过程,包括安装依赖、创建虚拟环境、激活环境及安装TensorFlow的具体步骤。同时提供了解决安装过程中可能出现的CUDA配置错误和Python版本不匹配等问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 本文介绍了如何在ubuntu上以virtualenv方式安装tensorflow。  

安装pip和virtualenv:

# Ubuntu/Linux 64-bit
sudo apt-get install python-pip python-dev python-virtualenv

# Mac OS X
sudo easy_install pip
sudo pip install --upgrade virtualenv

 创建 Virtualenv 虚拟环境:

  进入你想安装tensorflow的父目录下,然后执行下面命令建立虚拟环境:

virtualenv --system-site-packages tensorflow

 激活虚拟环境并安装tensorflow:

  对于python27,则执行如下命令:

source ./tensorflow/bin/activate  # If using bash
source ./tensorflow/bin/activate.csh  # If using csh
(tensorflow)$  # Your prompt should change

# Ubuntu/Linux 64-bit, CPU only:
pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.6.0-cp27-none-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled:
pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.6.0-cp27-none-linux_x86_64.whl

# Mac OS X, CPU only:
pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.6.0-py2-none-any.whl

   对于python3则执行如下命令:

source ./tensorflow/bin/activate  # If using bash
source ./tensorflow/bin/activate.csh  # If using csh
(tensorflow)$  # Your prompt should change

# Ubuntu/Linux 64-bit, CPU only:
pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.6.0-cp34-none-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled:
pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.6.0-cp34-none-linux_x86_64.whl

# Mac OS X, CPU only:
pip3 install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.6.0-py3-none-any.whl

 测试安装:

  在终端执行如下命令进入python shell环境:

python

   在python shell环境中测试:

>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
>>>
  •  如果遇到如下错误:
    _mod = imp.load_module('_pywrap_tensorflow', fp, pathname, description)
ImportError: libcudart.so.7.0: cannot open shared object file: No such file or directory

   那是你的CUDA安装配置不对:

    安装CUDA和CUDNN可以参考 这篇文章

  且添加如下两行到你的 ~/.bashrc 文件

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export CUDA_HOME=/usr/local/cuda
  •  如果遇到如下错误:
Python 2.7.9 (default, Apr  2 2015, 15:33:21) 
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
I tensorflow/stream_executor/dso_loader.cc:93] Couldn't open CUDA library libcublas.so.7.0. LD_LIBRARY_PATH: :/usr/local/cuda/lib64
I tensorflow/stream_executor/cuda/cuda_blas.cc:2188] Unable to load cuBLAS DSO.
I tensorflow/stream_executor/dso_loader.cc:93] Couldn't open CUDA library libcudnn.so.6.5. LD_LIBRARY_PATH: :/usr/local/cuda/lib64
I tensorflow/stream_executor/cuda/cuda_dnn.cc:1382] Unable to load cuDNN DSO
I tensorflow/stream_executor/dso_loader.cc:93] Couldn't open CUDA library libcufft.so.7.0. LD_LIBRARY_PATH: :/usr/local/cuda/lib64
I tensorflow/stream_executor/cuda/cuda_fft.cc:343] Unable to load cuFFT DSO.
I tensorflow/stream_executor/dso_loader.cc:101] successfully opened CUDA library libcuda.so locally
I tensorflow/stream_executor/dso_loader.cc:93] Couldn't open CUDA library libcurand.so.7.0. LD_LIBRARY_PATH: :/usr/local/cuda/lib64
I tensorflow/stream_executor/cuda/cuda_rng.cc:333] Unable to load cuRAND DSO.

   由安装报错可知,它使用的是7.0版本,故找不到,而如果你安装的是7.5版本,则可以执行如下命令添加相应链接:

sudo ln -s /usr/local/cuda/lib64/libcudart.so.7.5 /usr/local/cuda/lib64/libcudart.so.7.0
sudo ln -s libcublas.so.7.5 libcublas.so.7.0
sudo ln -s libcudnn.so.4.0.4 libcudnn.so.6.5
sudo ln -s libcufft.so libcufft.so.7.0
sudo ln -s libcurand.so libcurand.so.7.0

 

转载于:https://www.cnblogs.com/simplelovecs/p/5149982.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值