hdu---(2604)Queuing(矩阵快速幂)

本文介绍了一种计算特定条件下E-队列数量的方法,并通过矩阵快速幂算法实现了高效的求解过程。对于长度为L的队列,排除含有特定子序列的队列,计算剩余队列的数量。

Queuing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2796    Accepted Submission(s): 1282


Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.

  Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
 

 

Input
Input a length L (0 <= L <= 10 6) and M.
 

 

Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
 

 

Sample Input
3 8 4 7 4 8
 

 

Sample Output
6 2 1
 

 

Author
WhereIsHeroFrom
 
 
   首先我们不考虑去模的问题:
      l = 0                            0 种
      l = 1      e的数目有 f,m: 2 种
      l = 2        ...........ff,mm,fm,mf    4种
      l = 3                                         6
      l = 4                                        9
      l =  5                                       15
      l  =  6                                      25
      f5=f4+f3+f1;
      f6=f5+f4+f2;
  ------->  fn={   fn-1+fn-3+fn-4  n>4;
由齐次方程构造矩阵.....
|fn   |    |1,0,1,1|  |fn-1|
|fn-1|    |1,0,0,0|  |fn-2|
|fn-2| = |0,1,0,0|*|fn-3|
|fn-3|    |0,0,1,0|   |fn-4|
代码:
 1 //#define LOCAL
 2 #include<cstdio>
 3 #include<cstring>
 4 using namespace std;
 5  //matrix --> ¾ØÕó
 6 int mat[4][4];
 7 int ans[4][4];
 8 int len,m;
 9 
10 void init()
11 {
12     int cc[4][4]={
13           {1,0,1,1},{1,0,0,0},
14           {0,1,0,0},{0,0,1,0}};
15 
16   for(int i=0;i<4;i++)
17   {
18       for(int j=0;j<4;j++)
19     {
20       mat[i][j]=cc[i][j];
21       if(i==j) ans[i][j]=1;
22       else ans[i][j]=0;
23     }
24   }
25 }
26 void Matrix(int a[][4],int b[][4])    //¾ØÕóÏà³Ë
27 {
28     int i,j,k;
29     int c[4][4]={0};
30     for(j=0;j<4;j++){
31       for(i=0;i<4;i++){
32           for(k=0;k<4;k++){
33           c[j][i]=(c[j][i]+a[j][k]*b[k][i])%m;
34         }
35       }
36     }
37 
38     for(j=0;j<4;j++)
39        for(i=0;i<4;i++)
40            a[j][i]=c[j][i];
41 
42 }
43 
44 void pow(int n)
45 {
46     while(n>0)
47     {
48       if(n&1) Matrix(ans,mat);
49       n>>=1;
50       if(n==0) break;
51       Matrix(mat,mat);
52     }
53 }
54 int main()
55 {
56   #ifdef LOCAL
57    freopen("test.in","r",stdin);
58   #endif
59   int f[4]={2,4,6,9};
60   while(scanf("%d%d",&len,&m)!=EOF)
61   {
62       if(len==0)printf("%d\n",0);
63       else if(len<=4)printf("%d\n",f[len-1]%m);
64       else{
65       init();
66      pow(len-4);
67      printf("%d\n",(ans[0][0]*f[3]+ans[0][1]*f[2]+ans[0][2]*f[1]+ans[0][3]*f[0])%m);
68       }
69   }
70  return 0;
71 }
View Code

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值