艾伦人工智能研究院推出PyTorch上的NLP库 | 附paper+demo

微软联合创始人保罗·艾伦建立的艾伦人工智能研究院发布了一个PyTorch上的开源自然语言处理研究库AllenNLP。该库提供灵活的数据API、智能的batching和padding功能,并对文本处理中的常见操作进行了高层抽象。AllenNLP包含机器阅读理解、语义角色标注和文本蕴含三个模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来自AI新媒体量子位(QbitAI)

f2e451b3be88cb061da219729d253d5161aad5cb

微软联合创始人保罗·艾伦建立的艾伦人工智能研究院(AI2)今天发布了一个PyTorch上的开源自然语言处理(NLP)研究库:AllenNLP。

这个库提供灵活的数据API,能实现智能的batching和padding,对文本处理中的常见操作进行高层抽象,还提供了一个模块化、可扩展的实验框架。

9428043df4511e32c35c2559aa7d242ca41e61fc

AllenNLP包含3个模型:机器理解、语义角色标注和文本蕴含。

其中,机器阅读理解(MC)模型能够从一段文本中选择一段,来回答自然语言问题。AllenNLP中的MC模型是Seo et al, 2017论文提出的BiDAF(双向注意流)的实现。AllenNLP的BiDAF模型在SQuAD数据集上测试的EM成绩是68.7,略好于原始BiDAF模型的67.7分,训练速度也是原来的10倍。

语义角色标注(SRL)模型能从一个句子中还原出它的潜在谓词参数结构,还能为回答“谁”对“谁”做了“什么”这类关于句子含义的基本问题而建立表示。AllenNLP的SRL模型是He et al, 2017论文提出的deep BiLSTM的实现,性能与原文的模型相当,在CoNLL 2012上的F1得分为78.9。

当处理一对句子的时候,文本蕴含(TE)模型能预测第一个句子中的事实是否隐含了第二个句子中的事实。AllenNLP的TE模型是Parikh et al, 2017论文中可分解注意模型的实现,在SNLI数据集上达到了84.7的准确率,接近原始模型86.3%的成绩。

c56ddabe3b639532129c4429c1b1cab1825caed8

AllenNLP由AI2与华盛顿大学等高校的研究者合作开发和维护。

关于这个库的更多信息,以及文中提到的3个模型,见以下链接:

AllenNLP主页:http://allennlp.org/

论文:http://allennlp.org/papers/AllenNLP_white_paper.pdf

GitHub地址:https://github.com/allenai/allennlp

Demo:http://demo.allennlp.org/

安装指南:http://allennlp.org/tutorials/installation

机器阅读理解模型 - BiDAF (Seo et al, 2017):
https://www.semanticscholar.org/paper/Bidirectional-Attention-Flow-for-Machine-Comprehen-Seo-Kembhavi/007ab5528b3bd310a80d553cccad4b78dc496b02

语义角色标注模型 - deep BiLSTM model (He et al, 2017):
https://homes.cs.washington.edu/~luheng/files/acl2017_hllz.pdf

文本蕴含模型 - 可分解注意模型(Parikh et al, 2017):
https://www.semanticscholar.org/paper/A-Decomposable-Attention-Model-for-Natural-Languag-Parikh-T%C3%A4ckstr%C3%B6m/07a9478e87a8304fc3267fa16e83e9f3bbd98b27

本文作者:李林
原文发布时间:2017-09-09 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值