[SinGuLaRiTy] 2017-07-21 综合性测试

【SinGuLaRiTy-1028】 Copyright (c) SinGuLaRiTy 2017. All Rights Reserved.

对于所有题目:Time Limit: 1s | Memory Limit: 256MB

[USACO2016 Jan] 愤怒的奶牛 (Angry Cows)

题目描述

在数轴x上摆放有n(2<=n<=50000)捆干草堆,没有任何两堆在同样的位置,所有的位置均为整数。你可以用弹弓射击射击数轴上的任意地点。如果你用弹弓以R的力度射击x处,那么该处会发生爆炸,爆炸的范围是以R为半径的圆形区域,所以它会使得[x-R,x+R]的所有干草堆同时发生爆炸。这些干草堆的爆炸半径是R-1。它们又会触发连锁反应,第三轮的爆炸的半径为R-2,依次递减。请选择最小的力度射击,使得所有的干草堆全部爆炸。

输入

第一行包含N。接下来N个整数,表示干草堆的位置。所有位置在[0,1000000000]内。

输出

输出最小的力度R,使得所有的干草堆发生爆炸。四舍五入保留一位小数。

样例数据

样例输入样例输出

5
8
10
3
11
1

3.0

 

 

 

 

 

 

<样例解释>

如果以力度3射击坐标5,则坐标3,坐标8处的干草堆会发生爆炸,然后又会引爆坐标1和坐标10的干草堆,最后引爆坐标11处的干草堆。

解析

f[i]表示要炸掉i之前的所有干草堆,在i点最少需要的半径。
g[i]表示要炸掉i之后的所有干草堆,在i点最少需要的半径。
找到满足(j<i&&a[i]-a[j]>f[j]+1)的最后一个j,f[i]=min(a[i]-a[j],f[j+1]+1),g数组同理。
最后枚举起始的射击区间,计算答案。
由于答案的小数部分只可能是0或者0.5,所以将所有数乘以2就可以避免小数问题,最后答案再除以2就可以了。

Code

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>

#define ll long long
#define N 50005
#define inf 2000000000

using namespace std;

int n,a[N],f[N],g[N];

int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        a[i]*=2;
    }
    sort(a+1,a+n+1);
    for(int i=1;i<=n;i++)
        f[i]=g[i]=inf;
    int t=1;
    f[1]=0;
    for(int i=2;i<=n;i++)
    {
        while(t+1<i&&a[i]-a[t+1]>f[t+1]+2)
            t++;
        f[i]=min(a[i]-a[t],f[t+1]+2);
    }
    t=n;
    g[n]=0;
    for(int i=n-1;i>=1;i--)
    {
        while(t-1>i&&a[t-1]-a[i]>g[t-1]+2)
            t--;
        g[i]=min(a[t]-a[i],g[t-1]+2);
    }
    int ans=inf;
    for(int i=1,j=n;i<j;)
    {
        ans=min(ans,max((a[j]-a[i])/2,max(f[i],g[j])+2));
        if(f[i+1]<g[j-1])
            i++;
        else
            j--;
    }
    printf("%.1lf",(double)ans/2);
    return 0;
}

[USACO2016 Jan] 无线电通信 (Radio Contact)

题目描述

农夫约翰和奶牛贝西要去寻找丢失的奶牛,为了彼此能联系对方,他们带着无线电通讯设备。不幸的是电池快没有电了。所以它们要尽量节省电能。农夫从位置(fx,fy)出发,一共走N步,贝西从位置(bx,by)出发,一共走M步。农夫的路线是由一个长度为N的字符串限制,字符串只出现’E’或’S’或’W’或’N’中,表示东南西北四个方向。农夫每一单位时间可以选择不动,或者按照限制走出一步。奶牛贝西也是如此。现在无线电设备每一单位时间消耗的电量等于他们的距离的平方。请问,他们走到终点,最少消耗多少电量?

输入

第一行两个整数n,m(1<=n,m<=1000),第二行为fx,fy表示农夫的起始位置,第三行为bx,by,表示贝西的起始位置。
接下来有两个字符串,第一个字符串表示农夫的路线,第二个字符串表示贝西的路线。
他们的坐标总是在(0<=x,y<=1000)。北是y的正方向,东为x的正方向。

输出

输出一个整数,表示最少消耗的电量。

样例数据

样例输入样例输出

2 7
3 0
5 0
NN
NWWWWWN

28

 

 

 

 

 

 

解析

其实,这是一道水题。
设f[i][j]表示当前第一个人走了i步第二个人走了j步,那么就有f[i+1][j]=min(f[i+1][j],f[i][j]+dis())。然后f[i][j+1]和f[i+1][j+1]用同样的方法推出来。

Code

#include<cstdio>
#include<iostream>
#include<cstring>

#define N 1024

typedef long long ll;

using namespace std;

int n,m,a[N][2],b[N][2];
ll f[N][N];
char s[N];

inline int dis(int a,int b,int c,int d)
{
     return (c-a)*(c-a)+(b-d)*(b-d);
}

int main()
{
    scanf("%d%d",&n,&m);
    cin>>a[1][0]>>a[1][1]>>b[1][0]>>b[1][1];
    scanf("%s",s+1);
    for(int i=1;i<=n;i++)
    {
        if(s[i]=='N')
            a[i+1][0]=a[i][0],a[i+1][1]=a[i][1]+1;
        else if(s[i]=='S')
            a[i+1][0]=a[i][0],a[i+1][1]=a[i][1]-1;
        else if(s[i]=='W')
            a[i+1][0]=a[i][0]-1,a[i+1][1]=a[i][1];
        else if(s[i]=='E')
            a[i+1][0]=a[i][0]+1,a[i+1][1]=a[i][1];
    }
    scanf("%s",s+1);
    for(int i=1;i<=m;i++)
    {
        if(s[i]=='N')
            b[i+1][0]=b[i][0],b[i+1][1]=b[i][1]+1;
        else if(s[i]=='S')
            b[i+1][0]=b[i][0],b[i+1][1]=b[i][1]-1;
        else if(s[i]=='W')
            b[i+1][0]=b[i][0]-1,b[i+1][1]=b[i][1];
        else if(s[i]=='E')
            b[i+1][0]=b[i][0]+1,b[i+1][1]=b[i][1];
    }
    for(int i=1;i<=n+1;i++)
        for(int j=1;j<=m+1;j++)
            f[i][j]=2147483647;
    f[1][1]=0;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            f[i+1][j]=min(f[i+1][j],f[i][j]+dis(a[i+1][0],a[i+1][1],b[j][0],b[j][1]));
            f[i][j+1]=min(f[i][j+1],f[i][j]+dis(a[i][0],a[i][1],b[j+1][0],b[j+1][1]));
            f[i+1][j+1]=min(f[i+1][j+1],f[i][j]+dis(a[i+1][0],a[i+1][1],b[j+1][0],b[j+1][1]));
        }
    printf("%I64d",f[n+1][m+1]);
    return 0;
}

[USACO2016 Jan] 熄灯 (Lights Out)

题目描述

谷仓是一个简单的多边形。它的每一条边或平行于x轴,或平行于y轴。从任意一个点沿顺时针方向走,横边和纵边是交替出现的。多边形一共有n个点,编号为1到n。其中1号点为出口。奶牛贝西已经完全记住了谷仓的地图。它从某一个点出发,只能沿着边界走,在开灯的情况,它能很快知道怎么走才能更快到达出口。可是有一天,灯熄灭了。它一下慌了神,然后它忘了自己在哪个点了。但是幸运的是它仍然记得整个谷仓的地图,而且它能够凭触觉知道当前点的内角有多大,它也能感觉到当前点是不是出口,而且经过一条边后也能精确地计算出该边的长度。现在,为了寻找出口,它决定采取这样的策略:沿着顺时针方向继续走下去,直到它能够判断出自己的位置,然后再选择距离最短的方向(顺时针或逆时针)走到出口。求最坏的情况下,贝西走到出口要比灯没坏的情况下多花多少时间。

输入

第一行包含N(4<=N<=200),接下来N行每行包含两个整数,表示多边形的n个顶点(xi,yi),按顺时针的方向给出。这些点的范围均在[-100000,100000]

输出

输出贝西按照上述策略在最坏情况下比正常情况下要多花的时间。

样例数据

样例输入样例输出

4
0 0
0 10
1 10
1 0

2

 

 

 

 

 

 

<样例解释>

贝西如果在出口处(Point 1),肯定可以感知到,这绝对不会是最坏情况。现在考虑它在其他3个点时的情形:它当前可以感知到内角的大小。但因为内角都是90度,所以他无法确定自己位置。于是它按照既定的策略,顺时针走:
1.如果它在开始在点2,它需要走到点3,此时,它知道自己在哪里了。于是它找最短的路径,不管哪边,都是11.所以,它一共需要走12个单位。如果是开灯的情况下,只需要走10个单位。所以,它要多走两个单位。
2.如果它在点3,它要走11个单位。开灯的情况下也要走11个单位。
3.如果它在点4,它要走1个单位。开灯的情况下也要走1个单位。
于是最坏的情况下,它要多走两个单位。

解析

这道题,其实最重要的就是贝西判定当前的位置的方法:通过走过一段独一无二的路线。那么,我们怎么用代码进行实现呢?在这里,我用的是vector套pair,这样写也显得有些混乱;有一种用hash来判断的方法,相比之下还是好理解一点。(hash是一个很重要的东西,以后的字符串处理常常会用到) 大体思路就是通过用角度的大小(90度和270度)和边的长度来表达区分不同的路线,如果这个特征值一样,我们就认为贝西无法区分,也就找不到自己的位置;如果特征值不同,贝西就可以辨别出方向了。需要注意的是:数据的处理以及表达方式一定要确保能描述每一条路线的特征,而不会出现不同的路线有相同特征值的情况。

Code

#include<iostream>
#include<vector>
#include<set>
#include<algorithm>
#include<cstdio>

#define MAXN 210

using namespace std;

int opt[MAXN];

int main()
{
    int N;
    scanf("%d",&N);
    vector<pair<long long,long long> > A(N);
    for(int i=0;i<N;i++)
    {
        cin>>A[i].first>>A[i].second;
    }
    vector<int> S(1,0);
    for(int i=0;i<N;i++)
    {
        int j=(i+1)%N;
        int k=(i+2)%N;
        S.push_back(abs(A[i].first-A[j].first)+abs(A[i].second-A[j].second));
        if((A[i].first-A[j].first)*(A[k].second-A[j].second)-(A[k].first-A[j].first)*(A[i].second-A[j].second)>0)
            S.push_back(-1);
        else
            S.push_back(-2);
    }
    S.back()=0;
    for(int i=0;i<N;i++)
    {
        opt[i+1]=opt[i]+S[i*2+1];
    }
    opt[N]=0;
    for(int i=N-1;i>=0;i--)
    {
        opt[i]=min(opt[i],opt[i+1]+S[i*2+1]);
    }
    multiset<vector<int> > st;
    for(unsigned int i=0;i<S.size();i+=2)
    {
        for(unsigned int ln=1;i+ln<=S.size();ln+=2)
        {
            st.insert(vector<int>(S.begin()+i,S.begin()+i+ln));
        }
    }
    int result=0;
    for(unsigned int i=2;i+2<S.size();i+=2)
    {
        int ln;
        int cost=0;
        for(ln=1;;ln+=2)
        {
            if(st.count(vector<int>(S.begin()+i,S.begin()+i+ln))==1)
                break;
            cost+=S[i+ln];
        }
        result=max(result,cost+opt[(i+ln)/2]-opt[i/2]);
    }
    cout<<result;
    return 0;
}

[Vijos 1157] 分梨子

题目描述

Finley家的院子里有棵梨树,最近收获了许多梨子。于是,Finley决定挑出一些梨子,分给幼稚园的宝宝们。可是梨子大小味道都不太一样,一定要尽量挑选那些差不多的梨子分给孩子们,那些分到小梨子的宝宝才不会哭闹。每个梨子都具有两个属性值,Ai和Bi,本别表示梨子的大小和甜度情况。假设在选出的梨子中,两个属性的最小值分别是A0和B0。只要对于所有被选出的梨子i,都满足C1*(Ai-A0)+C2*(Bi-B0)≤C3(其中,C1、C2和C3都是已知的常数),就可以认为这些梨子是相差不多的,可以用来分给小朋友们。那么,作为幼稚园园长的你,能算出最多可以挑选出多少个梨子吗?

输入

第一行一个整数N(1≤N≤2000),表示梨子的总个数。 第二行三个正整数,依次为C1,C2和C3(C1,C2≤2000,C3≤10^9)。 接下来的N行,每行两个整数。第i行的两个整数依次为Ai和Bi。

输出

只有一个整数,表示最多可以选出的梨子个数。

样例数据

样例输入样例输出

3
2 3 6
3 2
1 1
2 1

2

 

 

 

 

 

 

解析

神奇的题~

对于这道题,我们要采用"数形结合"的思想:每一个梨子不是有两个特征值Ai和Bi吗,我们要把它们看做一组坐标(Ai,Bi),这样一来,每个梨子就变为了坐标轴上的一个点。我们来继续处理给出的题目信息:在选出的梨子里,有两个最小值,也就是说,对于所有我们选中的梨子,都满足:Ai>A0,Bi>B0,也就是说,所有的我们选中的梨子所代表的的点,都应该位于直线x=A0的右边,直线y=B0的上方。<是不是很"神奇"?>我们继续,题目又说了:每一个梨子(点)都满足C1*(Ai-A0)+C2*(Bi-B0)≤C3,我们用更"数学"的语言翻译一下,就变成:“每一个点(X,Y)都满足M*(X-a)+N(Y-b)≤C (M,N,C均为常数,我们在这里也暂且把a和b当做常数)”,嘿,这不是高中数学教材里的线性规划不等式吗?下面我们来画一画图(图中的点代表梨子):

如图,三条直线围成的这个直角三角形内的点就是我们能够选择的梨子了。欢呼了?雀跃啦?不行,现在直接枚举A0、B0,就已经是O(n^2)了,然后再在三角形里面扫描满足条件的梨子,O(n^3)直接超时。于是乎,我们要想一个法子,让扫描梨子这一项的工程量减小一点。我们先将原来的不等式变为:C1Ai+C2Bi-C3<=C1A0+C2B0 。然后我们可以这么搞:先在外层来一个for循环确定A0,接下来我们再由低到高枚举B0,这时看一看我们刚刚得出的不等式,发现等式右边的值变大了,也就是说会有新的梨子满足这个不等式。——哎,有法子了!我们在枚举A0、B0之前预处理一下:1>记录每一个y轴(y=1,y=2,y=3......)上的梨子(点)的数量,2>将梨子(点)按C1Ai+C2Bi-C3排序。我们在枚举B0的过程中,先删去由于B0增大而从三角形下方剔除出去的梨子(由于有了<1>预处理,这个过程就是O(1)的了),再加上新的满足不等式的值(<2>预处理也大大见减少了时间),不断更新,然后取最大值,最后就能得到答案了。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std; const int MAXN=2005;
struct node { int a,b,s; }p[MAXN];
int c1,c2,c3; int ans; int n; inline bool cmp(const node&a,const node&b) { return a.s<b.s; } void init() { scanf("%d",&n); scanf("%d%d%d",&c1,&c2,&c3); for(int i=1;i<=n;i++) { scanf("%d%d",&p[i].a,&p[i].b); p[i].s=p[i].a*c1+p[i].b*c2; } } int main() { init(); sort(p+1,p+n+1,cmp); for(int i=1;i<=n;i++) { int a0=p[i].a; int b0=p[i].b; int cur=i; int tot=0; while(p[cur++].s<=c1*a0+c2*b0+c3&&cur<=n) tot++; ans=max(ans,tot); } cout<<ans<<endl; return 0; }

 

Time: 2017-07-21

转载于:https://www.cnblogs.com/SinGuLaRiTy2001/p/7218156.html

36 elements are distorted. Either the isoparametric angles are out of the suggested limits or the triangular or tetrahedral quality measure is bad. The elements have been identified in element set WarnElemDistorted. OUTPUT AT EXACT, PREDEFINED TIME POINTS WAS REQUESTED IN THIS STEP. IN ORDER TO WRITE OUTPUT AT EXACT TIME POINTS SPECIFIED, Abaqus MIGHT USE TIME INCREMENTS SMALLER THAN THE MINIMUM TIME INCREMENT ALLOWED IN THE STEP. IN ADDITION, THE NUMBER OF INCREMENTS REQUIRED TO COMPLETE THE STEP WILL IN GENERAL INCREASE. Output request v1 is not available for this type of analysis There are 3 unconnected regions in the model. Solver problem. Numerical singularity when processing node P1TEST-2-1.26 D.O.F. 1 ratio = 1.51839E+12. Solver problem. Numerical singularity when processing node P1TEST-2-1.26 D.O.F. 3 ratio = 475.054E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 1 ratio = 35.1420E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 2 ratio = 13.4128E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 3 ratio = 505.827E+12 . The system matrix has 23545 negative eigenvalues. Solver problem. Numerical singularity when processing node P1TEST-2-1.7740 D.O.F. 3 ratio = 11.7175E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7796 D.O.F. 3 ratio = 6.59077E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8404 D.O.F. 3 ratio = 97.0262E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8405 D.O.F. 3 ratio = 9.91480E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8985 D.O.F. 3 ratio = 59.2946E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6684 D.O.F. 3 ratio = 39.0046E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6230 D.O.F. 3 ratio = 8.48070E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6287 D.O.F. 3 ratio = 35.8394E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6802 D.O.F. 3 ratio = 30.7460E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6803 D.O.F. 3 ratio = 7.32544E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6891 D.O.F. 3 ratio = 12.6899E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6892 D.O.F. 3 ratio = 13.1385E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7441 D.O.F. 3 ratio = 5.43419E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7442 D.O.F. 3 ratio = 16.5665E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8398 D.O.F. 3 ratio = 17.9454E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.10450 D.O.F. 3 ratio = 11.3629E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.9243 D.O.F. 3 ratio = 8.34036E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7478 D.O.F. 3 ratio = 20.6547E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2863 D.O.F. 3 ratio = 32.3509E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.878 D.O.F. 3 ratio = 23.7521E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2291 D.O.F. 3 ratio = 52.3054E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7737 D.O.F. 3 ratio = 8.85549E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5072 D.O.F. 3 ratio = 16.5550E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5069 D.O.F. 3 ratio = 22.2438E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5086 D.O.F. 3 ratio = 19.5490E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5778 D.O.F. 3 ratio = 19.7793E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4612 D.O.F. 3 ratio = 5.45237E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5074 D.O.F. 3 ratio = 49.5806E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5777 D.O.F. 3 ratio = 14.2473E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5075 D.O.F. 3 ratio = 4.96607E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5064 D.O.F. 3 ratio = 18.2234E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4603 D.O.F. 3 ratio = 21.7391E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5070 D.O.F. 3 ratio = 14.6459E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5774 D.O.F. 3 ratio = 5.28532E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5779 D.O.F. 3 ratio = 110.232E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4607 D.O.F. 3 ratio = 7.53169E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.3942 D.O.F. 3 ratio = 11.0816E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4795 D.O.F. 3 ratio = 4.73811E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5404 D.O.F. 3 ratio = 14.4085E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.10493 D.O.F. 3 ratio = 6.04685E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6902 D.O.F. 3 ratio = 17.6672E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7482 D.O.F. 3 ratio = 18.0497E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.886 D.O.F. 3 ratio = 17.1849E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6239 D.O.F. 3 ratio = 12.2502E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2966 D.O.F. 3 ratio = 4.70437E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1424 D.O.F. 3 ratio = 23.6393E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.1425 D.O.F. 3 ratio = 10.6345E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7443 D.O.F. 3 ratio = 12.7344E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.821 D.O.F. 3 ratio = 15.0514E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.680 D.O.F. 3 ratio = 6.06589E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.462 D.O.F. 3 ratio = 9.54202E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.461 D.O.F. 3 ratio = 18.2187E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.460 D.O.F. 3 ratio = 4.74393E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.157 D.O.F. 3 ratio = 48.7365E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.101 D.O.F. 3 ratio = 6.62498E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.48 D.O.F. 3 ratio = 14.5672E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4675 D.O.F. 3 ratio = 4.87958E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5209 D.O.F. 3 ratio = 9.43404E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5886 D.O.F. 3 ratio = 26.2999E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5885 D.O.F. 3 ratio = 19.2370E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5199 D.O.F. 3 ratio = 24.6083E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5887 D.O.F. 3 ratio = 5.57688E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.4679 D.O.F. 3 ratio = 6.70264E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5217 D.O.F. 3 ratio = 66.7249E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5200 D.O.F. 3 ratio = 42.9486E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5747 D.O.F. 3 ratio = 14.7032E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.3839 D.O.F. 3 ratio = 843.681E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5698 D.O.F. 3 ratio = 5.21315E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5379 D.O.F. 3 ratio = 57.7590E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6279 D.O.F. 3 ratio = 8.43431E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6964 D.O.F. 3 ratio = 5.63659E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.9656 D.O.F. 3 ratio = 646.432E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.745 D.O.F. 3 ratio = 16.4278E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.189 D.O.F. 3 ratio = 33.0501E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5970 D.O.F. 3 ratio = 10.5968E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5969 D.O.F. 3 ratio = 9.28691E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5264 D.O.F. 3 ratio = 5.18585E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.4640 D.O.F. 3 ratio = 5.42354E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5147 D.O.F. 3 ratio = 7.27317E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5265 D.O.F. 3 ratio = 366.833E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5858 D.O.F. 3 ratio = 13.9626E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5924 D.O.F. 3 ratio = 34.8631E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5861 D.O.F. 3 ratio = 7.67137E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5149 D.O.F. 3 ratio = 68.1263E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5857 D.O.F. 3 ratio = 13.5225E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5263 D.O.F. 3 ratio = 8.68280E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5144 D.O.F. 3 ratio = 9.98761E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.747 D.O.F. 3 ratio = 12.7017E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8383 D.O.F. 3 ratio = 64.9370E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6649 D.O.F. 3 ratio = 7.73570E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.193 D.O.F. 3 ratio = 17.5045E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.9225 D.O.F. 3 ratio = 4.70492E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7365 D.O.F. 3 ratio = 12.1323E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.9286 D.O.F. 3 ratio = 10.4841E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5366 D.O.F. 3 ratio = 5.40483E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.3635 D.O.F. 3 ratio = 6.93097E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1341 D.O.F. 3 ratio = 6.11203E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1338 D.O.F. 3 ratio = 27.1885E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.851 D.O.F. 3 ratio = 23.8949E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.627 D.O.F. 3 ratio = 18.1590E+09 . Solver problem. Numerical singularity: the maximum number of numerical singularity checks messages printed for this increment has been reached. The output of these messages is supressed until the end of the increment to avoid potentially large increases in the system time needed to complete the analysis. Excessive distortion at a total of 302 integration points in solid (continuum) elements Solver problem. Numerical singularity when processing node P1TEST-2-1.26 D.O.F. 1 ratio = 1.51839E+12. Solver problem. Numerical singularity when processing node P1TEST-2-1.26 D.O.F. 3 ratio = 475.054E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 1 ratio = 35.1420E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 2 ratio = 13.4128E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 3 ratio = 505.827E+12 . The system matrix has 23735 negative eigenvalues. Solver problem. Numerical singularity when processing node P1TEST-2-1.8190 D.O.F. 3 ratio = 6.40877E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.3839 D.O.F. 3 ratio = 52.0487E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5362 D.O.F. 3 ratio = 12.4431E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5363 D.O.F. 3 ratio = 10.1116E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5364 D.O.F. 3 ratio = 52.3366E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5264 D.O.F. 3 ratio = 8.30372E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5351 D.O.F. 3 ratio = 4.84013E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5456 D.O.F. 3 ratio = 11.6060E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6011 D.O.F. 3 ratio = 7.77439E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6009 D.O.F. 3 ratio = 5.70545E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.4830 D.O.F. 3 ratio = 7.70129E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8454 D.O.F. 3 ratio = 7.10202E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1806 D.O.F. 3 ratio = 7.99413E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1388 D.O.F. 3 ratio = 40.0582E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6933 D.O.F. 3 ratio = 11.0363E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2791 D.O.F. 3 ratio = 4.54802E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.2665 D.O.F. 3 ratio = 54.5387E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2664 D.O.F. 3 ratio = 5.69178E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1475 D.O.F. 3 ratio = 29.8249E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6025 D.O.F. 3 ratio = 57.9842E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2503 D.O.F. 3 ratio = 17.7218E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.1923 D.O.F. 3 ratio = 15.6029E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 1 ratio = 11.9818E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 2 ratio = 12.9509E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 3 ratio = 142.872E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4878 D.O.F. 3 ratio = 4.90865E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.2505 D.O.F. 3 ratio = 6.06260E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5069 D.O.F. 3 ratio = 5.98944E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5779 D.O.F. 3 ratio = 6.64290E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5930 D.O.F. 3 ratio = 5.06973E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5932 D.O.F. 3 ratio = 43.9842E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.9807 D.O.F. 3 ratio = 6.90718E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.95 D.O.F. 3 ratio = 5.28565E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5314 D.O.F. 3 ratio = 4.87347E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.4446 D.O.F. 3 ratio = 12.7125E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.1314 D.O.F. 3 ratio = 11.6188E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5810 D.O.F. 3 ratio = 4.76208E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8815 D.O.F. 3 ratio = 26.0838E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8486 D.O.F. 3 ratio = 36.4567E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6458 D.O.F. 3 ratio = 7.51568E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5886 D.O.F. 3 ratio = 5.03334E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5217 D.O.F. 3 ratio = 5.27853E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7242 D.O.F. 3 ratio = 5.53601E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5379 D.O.F. 3 ratio = 6.24178E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8357 D.O.F. 3 ratio = 19.1481E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8967 D.O.F. 3 ratio = 8.27736E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5330 D.O.F. 3 ratio = 22.2800E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.435 D.O.F. 3 ratio = 6.19020E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8643 D.O.F. 3 ratio = 22.9472E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6539 D.O.F. 3 ratio = 5.43487E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7725 D.O.F. 3 ratio = 13.8887E+09 . The system matrix has 8044 negative eigenvalues. Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 1 ratio = 3.24844E+12. Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 2 ratio = 445.235E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 3 ratio = 190.875E+09 . The system matrix has 8189 negative eigenvalues. Solver problem. Zero pivot when processing node P1TEST-3-1.2398 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2398 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2398 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2395 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2395 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2395 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2397 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2397 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2397 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2394 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2394 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2394 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.3858 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.3858 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.3858 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.3493 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.3493 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.3493 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.3128 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.3128 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.3128 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2763 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2763 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2763 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2234 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2234 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2234 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2233 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2233 D.O.F. 2.
最新发布
07-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值