题目链接:http://poj.org/problem?id=3686
题意:n个产品,m个机器。第i个产品在第j个机器上加工完需要花费时间g[i][j]。从开始到每个产品加工完成时的这段时间为这个产品的花费时间。安排每个产品使得平均花费时间最小?
思路:若第i个产品在第j个机器上第k个加工,则从k+1往后每个在j机器上加工的产品的时间都会延长g[i][j]。因此将每个机器拆成n个点,则第j个机器的第i个点编号p=(j-1)*n+i,w[i][p]=(n-i+1)*g[i][j]。
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <map>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)>=0?(x):-(x))
#define i64 long long
#define u32 unsigned int
#define u64 unsigned long long
#define clr(x,y) memset(x,y,sizeof(x))
#define CLR(x) x.clear()
#define ph(x) push(x)
#define pb(x) push_back(x)
#define Len(x) x.length()
#define SZ(x) x.size()
#define PI acos(-1.0)
#define sqr(x) ((x)*(x))
#define MP(x,y) make_pair(x,y)
#define FOR0(i,x) for(i=0;i<x;i++)
#define FOR1(i,x) for(i=1;i<=x;i++)
#define FOR(i,a,b) for(i=a;i<=b;i++)
#define DOW0(i,x) for(i=x;i>=0;i--)
#define DOW1(i,x) for(i=x;i>=1;i--)
#define DOW(i,a,b) for(i=a;i>=b;i--)
using namespace std;
void RD(int &x){scanf("%d",&x);}
void RD(i64 &x){scanf("%I64d",&x);}
void RD(u32 &x){scanf("%u",&x);}
void RD(double &x){scanf("%lf",&x);}
void RD(int &x,int &y){scanf("%d%d",&x,&y);}
void RD(i64 &x,i64 &y){scanf("%I64d%I64d",&x,&y);}
void RD(u32 &x,u32 &y){scanf("%u%u",&x,&y);}
void RD(double &x,double &y){scanf("%lf%lf",&x,&y);}
void RD(int &x,int &y,int &z){scanf("%d%d%d",&x,&y,&z);}
void RD(i64 &x,i64 &y,i64 &z){scanf("%I64d%I64d%I64d",&x,&y,&z);}
void RD(u32 &x,u32 &y,u32 &z){scanf("%u%u%u",&x,&y,&z);}
void RD(double &x,double &y,double &z){scanf("%lf%lf%lf",&x,&y,&z);}
void RD(char &x){x=getchar();}
void RD(char *s){scanf("%s",s);}
void RD(string &s){cin>>s;}
void PR(int x) {printf("%d\n",x);}
void PR(i64 x) {printf("%I64d\n",x);}
void PR(u32 x) {printf("%u\n",x);}
void PR(double x) {printf("%.6lf\n",x);}
void PR(char x) {printf("%c\n",x);}
void PR(char *x) {printf("%s\n",x);}
void PR(string x) {cout<<x<<endl;}
const int INF=1<<25;
const int N=2600;
int n,m;
int visitX[N],visitY[N],match[N];
int X[N],Y[N],w[N][N];
int g[N][N];
int DFS(int u)
{
visitX[u]=1;
int v;
FOR0(v,m) if(!visitY[v]&&w[u][v]&&X[u]+Y[v]==w[u][v])
{
visitY[v]=1;
if(match[v]==-1||DFS(match[v]))
{
match[v]=u;
return 1;
}
}
return 0;
}
int main()
{
int c;
RD(c);
while(c--)
{
RD(n,m);
int i,j,k,t;
FOR0(i,n) FOR0(j,m) RD(g[i][j]);
clr(X,0);
clr(Y,0);
FOR0(i,n)
{
t=0;
FOR0(j,m) FOR1(k,n) w[i][t++]=-g[i][j]*k;
}
m=n*m;
clr(match,-1);
FOR0(k,n)
{
while(1)
{
clr(visitX,0);
clr(visitY,0);
if(DFS(k)) break;
int c=INF;
FOR0(i,n) if(visitX[i]) FOR0(j,m) if(!visitY[j])
{
c=min(c,X[i]+Y[j]-w[i][j]);
}
FOR0(i,n) if(visitX[i]) X[i]-=c;
FOR0(i,m) if(visitY[i]) Y[i]+=c;
}
}
int ans=0;
FOR0(i,n) ans+=X[i];
FOR0(i,m) if(match[i]!=-1) ans+=Y[i];
PR(-1.0*ans/n);
}
return 0;
}