[LeetCode] Divide Two Integers

本文介绍如何利用位操作技巧实现整数除法,包括处理边界情况和避免溢出的方法,通过实例演示理解位操作在算法实现中的应用。

In this problem, we are asked to divide two integers. However, we are not allowed to use division, multiplication and mod operations. So, what else can we use? Yeah, bit manipulations.

Let's do an example and see how bit manipulations work.

Suppose we want to divide 15 by 3, so 15 is dividend and 3 is divisor. Well, division simply requires us to find how many times we can subtract the divisor from the the dividend without making the dividend negative.

Let's get started. We subtract 3 from 15 and we get 12, which is positive. Let's try to subtract more. Well, we shift 3 to the left by 1 bit and we get 6. Subtracting 6 from 15 still gives a positive result. Well, we shift again and get 12. We subtract 12 from 15 and it is still positive. We shift again, obtaining 24 and we know we can at most subtract 12. Well, since 12 is obtained by shifting 3 to left twice, we know it is 4 times of 3. How do we obtain this 4? Well, we start from 1 and shift it to left twice at the same time. We add 4 to an answer (initialized to be0). In fact, the above process is like 15 = 3 * 4 + 3. We now get part of the quotient (4), with a remainder 3.

Then we repeat the above process again. We subtract divisor = 3 from the remaining dividend = 3 and obtain 0. We know we are done. No shift happens, so we simply add 1 << 0 to the answer.

Now we have the full algorithm to perform division.

According to the problem statement, we need to handle some exceptions, such as overflow.

Well, two cases may cause overflow:

  1. divisor = 0;
  2. dividend = INT_MIN and divisor = -1 (because abs(INT_MIN) = INT_MAX + 1).

Of course, we also need to take the sign into considerations, which is relatively easy.

Putting all these together, we have the following code.

 1 class Solution {
 2 public:
 3     int divide(int dividend, int divisor) {
 4         if (!divisor || (dividend == INT_MIN && divisor == -1))
 5             return INT_MAX;
 6         int sign = ((dividend < 0) ^ (divisor < 0)) ? -1 : 1;
 7         long long dvd = labs(dividend);
 8         long long dvs = labs(divisor);
 9         int res = 0;
10         while (dvd >= dvs) { 
11             long long temp = dvs, multiple = 1;
12             while (dvd >= (temp << 1)) {
13                 temp <<= 1;
14                 multiple <<= 1;
15             }
16             dvd -= temp;
17             res += multiple;
18         }
19         return res * sign;
20     }
21 };

 

转载于:https://www.cnblogs.com/jcliBlogger/p/4557391.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值