生存分析/Weibull Distribution韦布尔分布

本文介绍了生存分析中的韦布尔分布,并提供了在保险、医疗和信用卡风控领域的应用实例。通过链接分享了相关视频教程和资料,帮助读者深入理解和运用韦布尔分布进行数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程)

 

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

 

 

 

 

医药统计项目合作请联系

QQ:231469242

 

测试脚本

 

测试数据

 

 

T is an array of durations, E is a either boolean or binary array representing whether the “death” was observed (alternatively an individual can be censored).

import lifelines
from lifelines.datasets import load_waltons

df = load_waltons() # returns a Pandas DataFrame

T = df['T']
E = df['E']

from lifelines import KaplanMeierFitter
kmf = KaplanMeierFitter()
kmf.fit(T, event_observed=E) # more succiently, kmf.fit(T,E)

kmf.survival_function_
'''
Out[7]: 
          KM_estimate
timeline             
0.0          1.000000
6.0          0.993865
7.0          0.987730
9.0          0.969210
13.0         0.950690
15.0         0.938344
17.0         0.932170
19.0         0.913650
22.0         0.888957
26.0         0.858090
29.0         0.827224
32.0         0.821051
33.0         0.802531
36.0         0.790184
38.0         0.777837
41.0         0.734624
43.0         0.728451
45.0         0.672891
47.0         0.666661
48.0         0.616817
51.0         0.598125

'''

kmf.median_
'''
Out[8]: 56.0
'''
kmf.plot()

 

 

import lifelines
from lifelines.datasets import load_waltons
from lifelines import KaplanMeierFitter
df = load_waltons() # returns a Pandas DataFrame

kmf = KaplanMeierFitter()
T = df['T']
E = df['E']
groups = df['group']
ix = (groups == 'miR-137')

kmf.fit(T[~ix], E[~ix], label='control')
ax = kmf.plot()

kmf.fit(T[ix], E[ix], label='miR-137')
kmf.plot(ax=ax)

 

 

 

import numpy as np
import matplotlib.pyplot as plt 
from lifelines.plotting import plot_lifetimes
from numpy.random import uniform, exponential

N = 25
current_time = 10
actual_lifetimes = np.array([[exponential(12), exponential(2)][uniform()<0.5] for i in range(N)])
observed_lifetimes = np.minimum(actual_lifetimes,current_time)
observed= actual_lifetimes < current_time

plt.xlim(0,25)
plt.vlines(10,0,30,lw=2, linestyles="--")
plt.xlabel('time')
plt.title('Births and deaths of our population, at $t=10$')
plot_lifetimes(observed_lifetimes, event_observed=observed)
print "Observed lifetimes at time %d:\n"%(current_time), observed_lifetimes

 

 

import pandas as pd
import lifelines
from lifelines import KaplanMeierFitter
import matplotlib.pyplot as plt

data = lifelines.datasets.load_dd()
kmf = KaplanMeierFitter()

T = data["duration"]
C = data["observed"]

kmf.fit(T, event_observed=C )
plt.title('Survival function of political regimes')
kmf.survival_function_.plot()
kmf.plot()

kmf.median_

 

 

 

import pandas as pd
import lifelines
from lifelines import KaplanMeierFitter
import matplotlib.pyplot as plt

data = lifelines.datasets.load_dd()
kmf = KaplanMeierFitter()

T = data["duration"]
C = data["observed"]

kmf.fit(T, event_observed=C )
plt.title('Survival function of political regimes')
kmf.survival_function_.plot()
kmf.plot()



ax = plt.subplot(111)

dem = (data["democracy"] == "Democracy")
kmf.fit(T[dem], ev
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值