sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程)
医药统计项目合作请联系
QQ:231469242
测试脚本
测试数据
T
is an array of durations, E
is a either boolean or binary array representing whether the “death” was observed (alternatively an individual can be censored).
import lifelines
from lifelines.datasets import load_waltons
df = load_waltons() # returns a Pandas DataFrame
T = df['T']
E = df['E']
from lifelines import KaplanMeierFitter
kmf = KaplanMeierFitter()
kmf.fit(T, event_observed=E) # more succiently, kmf.fit(T,E)
kmf.survival_function_
'''
Out[7]:
KM_estimate
timeline
0.0 1.000000
6.0 0.993865
7.0 0.987730
9.0 0.969210
13.0 0.950690
15.0 0.938344
17.0 0.932170
19.0 0.913650
22.0 0.888957
26.0 0.858090
29.0 0.827224
32.0 0.821051
33.0 0.802531
36.0 0.790184
38.0 0.777837
41.0 0.734624
43.0 0.728451
45.0 0.672891
47.0 0.666661
48.0 0.616817
51.0 0.598125
'''
kmf.median_
'''
Out[8]: 56.0
'''
kmf.plot()
import lifelines
from lifelines.datasets import load_waltons
from lifelines import KaplanMeierFitter
df = load_waltons() # returns a Pandas DataFrame
kmf = KaplanMeierFitter()
T = df['T']
E = df['E']
groups = df['group']
ix = (groups == 'miR-137')
kmf.fit(T[~ix], E[~ix], label='control')
ax = kmf.plot()
kmf.fit(T[ix], E[ix], label='miR-137')
kmf.plot(ax=ax)
import numpy as np
import matplotlib.pyplot as plt
from lifelines.plotting import plot_lifetimes
from numpy.random import uniform, exponential
N = 25
current_time = 10
actual_lifetimes = np.array([[exponential(12), exponential(2)][uniform()<0.5] for i in range(N)])
observed_lifetimes = np.minimum(actual_lifetimes,current_time)
observed= actual_lifetimes < current_time
plt.xlim(0,25)
plt.vlines(10,0,30,lw=2, linestyles="--")
plt.xlabel('time')
plt.title('Births and deaths of our population, at $t=10$')
plot_lifetimes(observed_lifetimes, event_observed=observed)
print "Observed lifetimes at time %d:\n"%(current_time), observed_lifetimes
import pandas as pd
import lifelines
from lifelines import KaplanMeierFitter
import matplotlib.pyplot as plt
data = lifelines.datasets.load_dd()
kmf = KaplanMeierFitter()
T = data["duration"]
C = data["observed"]
kmf.fit(T, event_observed=C )
plt.title('Survival function of political regimes')
kmf.survival_function_.plot()
kmf.plot()
kmf.median_
import pandas as pd
import lifelines
from lifelines import KaplanMeierFitter
import matplotlib.pyplot as plt
data = lifelines.datasets.load_dd()
kmf = KaplanMeierFitter()
T = data["duration"]
C = data["observed"]
kmf.fit(T, event_observed=C )
plt.title('Survival function of political regimes')
kmf.survival_function_.plot()
kmf.plot()
ax = plt.subplot(111)
dem = (data["democracy"] == "Democracy")
kmf.fit(T[dem], ev