统计词频python实现gensim_15分钟入门NLP神器—Gensim

本文介绍了Gensim这款Python自然语言处理工具,讲解了如何进行语料预处理,包括分词、去除停用词等,以及如何使用Gensim的doc2bow函数将文本转换为稀疏向量。接着,文章通过TF-IDF模型展示了向量变换的过程,并介绍了LDA等主题模型。最后,讨论了TF-IDF和LDA的概念,以及如何计算文档相似度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前 言

作为自然语言处理爱好者,大家都应该听说过或使用过大名鼎鼎的Gensim吧,这是一款具备多种功能的神器。

Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。

它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,

支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口

1 基本概念

语料(Corpus):一组原始文本的集合,用于无监督地训练文本主题的隐层结构。语料中不需要人工标注的附加信息。在Gensim中,Corpus通常是一个可迭代的对象(比如列表)。每一次迭代返回一个可用于表达文本对象的稀疏向量。

向量(Vector):由一组文本特征构成的列表。是一段文本在Gensim中的内部表达。

稀疏向量(SparseVector):通常,我们可以略去向量中多余的0元素。此时,向量中的每一个元素是一个(key, value)的元组

模型(Model):是一个抽象的术语。定义了两个向量空间的变换(即从文本的一种向量表达变换为另一种向量表达)。

2 步骤一:训练语料的预处理

由于Gensim使用python语言开发的,为了减少安装中的繁琐,直接使用anaconda工具进行集中安装,

输入:pip install gensim,这里不再赘述。

训练语料的预处理指的是将文档中原始的字符文本转换成Gensim模型所能理解的稀疏向量的过程。

通常,我们要处理的原生语料是一堆文档的集合,每一篇文档又是一些原生字符的集合。在交给Gensim的模型训练之前,我们需要将这些原生字符解析成Gensim能处理的稀疏向量的格式。由于语言和应用的多样性,我们需要先对原始的文本进行分词、去除停用词等操作,得到每一篇文档的特征列表。例如,在词袋模型中,文档的特征就是其包含的word:

texts = [['human', 'interface', 'computer'],

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值