signature=59ab60a74b79500b972110b41b822c55,Temporal breakdown and Borel resummation in the complex L...

论文探讨了Parisi-Klauder猜想在带有Wick旋转角度的θ/2φ(4)复数测度中的行为,发现Borel变换可正确捕捉时间依赖的瞬时及极限时刻的矩。然而,数值模拟与理论结果在大时间尺度上存在分歧。研究还揭示了纯实噪声下崩溃时间的特性,并通过计算复杂噪声下的平衡分布验证了矩的不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

We reexamine the Parisi-Klauder conjecture for complex e(i theta/2)phi(4) measures with a Wick rotation angle 0 0 asymptotic expansion which is shown to be Bore! summable. The Borel transform correctly reproduces the time dependent moments of the complex measure for all t, including their t -> infinity equilibrium values. On the other hand the results of a direct numerical simulation of the Langevin moments are found to disagree from the 'correct' result for t larger than a finite t(c). The breakdown time t, increases powerlike for decreasing strength of the noise's imaginary part but cannot be excluded to be finite for purely real noise. To ascertain the discrepancy we also compute the real equilibrium distribution for complex noise explicitly and verify that its moments differ from those obtained with the complex measure. (C) 2012 Elsevier Inc. All rights reserved.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值