一、控制直流无刷电机
BLDC进行梯形波控制时,需要检测转子磁极位置,根据检测的位置定子线圈进行换相通电,形成6步的旋转磁场,进而带动转子同步转动的控制方式。而检测转子磁极位置又可分为电机带霍尔传感器(有感)以及不带霍尔传感器方法,检测转子磁极位置的方法不同,会直接BLDC控制模式不同。
BLDC有感控制
对于BLDC有感控制,要求BLDC电机本身装有霍尔传感器,电机霍尔传感器安装时需要相差120°,如下图所示
电机按一定方向转动时,3个霍尔的输出会按照6步的规律变化如下:
根据霍尔传感器位置,进而按照一定规律给三相绕组通电,从而来实现电机的控制。考虑到每个电机霍尔传感器安装方式不同,换相开关表会有一定的区别。具体可以根据厂商提供的资料或实测电机霍尔输出来确定关系。
如下为一种电机的霍尔输出与反电动势输出示意,可知在电机霍尔A输出由1变为0时,控制U+开通。
BLDC有感控制系统如下:
BLDC速度控制
在BLDC电子换相的基础上,通过更改导通时PWM占空比即可改变等效的输出电压, 从而更改来实现调速。
BLDC无感控制
BLDC使用霍尔传感器时,存在以下问题:HALL的安装条件受到限制、Hall影响系统可靠性(Hall易损坏,需要检修)、Hall对安装精度有要求、有一定成本。因此有必要研究BLDC的无感控制方法。
BLDC 无传感器控制的主要任务就是对转子位置进行估计。两种基本技术如下:
- 基于反电动势感应的技术:基于反电动势过零来进行换相;要求反电动势足够高,速度范围在额定转速的5-10%至100%。
- 基于电机电感凸极的技术:基于瞬态电流测量;速度范围为静止至标称速度的约20%。
常用的是基于反电动势过零检测的方法,但这要求电机有一定速度;有时候会结合使用,但需要使用复杂的控制算法。下面主要对基于反电动势感应的技术进行介绍。
正确换相的电机相绕组电压波形与反电动势波形如图所示。从图中可得到正确的换相点应在过零点延迟30°。因此,反电动势过零信号可以用作估计正确换相时间点的计算依据。
二、用二极管实现不同电压的输出
利用二极管的单向导电性可以设计出好玩、实用的电路。
限幅电路
如下图所示,当在正半周期,并且VIN大于等于0.7V,二极管正向导通。此时,VOUT会被钳位在0.7V上。
而当VIN小于0.7V时二极管是截止状态,在负半周期时相当于电流反向,二极管也是截至状态,此时VOUT=VIN,VOUT波形跟随VIN变化。
限辐电路示意图
根据上面限辐电路的原理,可以设计如下双向限辐电路。
双向限辐电路示意图
然而有时候0.7V电压不能满足要求,那么,怎么产生不同大小的限幅电压?
在电路中加入偏置电压VBIAS,只有当VIN大于等于VBIAS时二极管才能导通。此时VOUT被钳位,其值是0.7V+VBIAS,如下图所示。
钳位电路
下面是二极管结合电容实现的钳位电路。分析中不考虑二极管的导通压降,假设RC时间常数足够大,从而使输出波形不会失真。
钳位电路原理
当输入Vin在负半周期为负时,电流如下图中红色箭头所示。二极管导通,电容逐渐充电至V,在此过程中Vout=0。
当输入Vin在正半周为正时,电流如蓝色箭头所示。二极管截止,Vout等于电容上电压加上正半周电压V,此时Vout=2V。
偏压钳位电路
跟限幅电路类似的,为了获得所需要的钳位值,要在电路中加入偏置电压,如下图所示
偏压钳位电路
当所加的偏压与二极管导通方向一致,钳位值会提高V1,Vout=2V+V1。
双向二极管钳位电路应用举例
在某些电路中会利用两个二极管的钳位作用进行保护,如下图所示,假设0.7V为D1和D2的导通电压。
- Vin大于等于Vmax,D1导通,Vout会被钳位在Vmax
- Vin小于等于Vmin时,Vout被钳位在Vmin
二极管钳位保护电路