matlab迭代求解泊松方程,MATLAB编程求解二维泊松方程

本文介绍了一种求解二维泊松方程的数值方法,并给出了详细的MATLAB实现代码。通过构建刚度矩阵来逼近拉普拉斯算子,实现了对带有常系数的椭圆型方程的离散化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

%%%% 真解 u=sin(pi*x)*sin(pi*y) %%%

%%%% 方程 -Laplace(u)=f %%%%%%

%%%% f=2*pi^2*sin(pi*x)*sin(pi*y) %%%%%%

%%%%difference code for elliptic equations with constant coefficient %%%%% %clear all

%clc

N=20;

h=1/N;

S=h^2;

x=0:h:1;

y=0:h:1;

%%% Stiff matrix

A=zeros((N-1)^2,(N-1)^2);

for i=1

A(i,i)=4/h^2;

A(i,i+1)=-1/h^2;

A(i,i+(N-1))=-1/h^2;

end

for i=N-1

A(i,i-1)=-1/h^2;

A(i,i)=4/h^2;

A(i,2*i)=-1/h^2; %A(i,i+(N-1))=-1/h^2

end

for i=(N-2)*(N-1)+1

A(i,i-(N-1))=-1/h^2;

A(i,i)=4/h^2;

A(i,i+1)=-1/h^2;

end

for i=(N-1)^2

A(i,i-(N-1))=-1/h^2;

A(i,i)=4/h^2;

A(i,i-1)=-1/h^2;

end

for n=2:N-2

i=(N-2)*(N-1)+n;

A(i,i-(N-1))=-1/h^2;

A(i,i-1)=-1/h^2;

A(i,i)=4/h^2;

A(i,i+1)=-1/h^2;

end

for i=2:N-2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值