[leetcode]64. Minimum Path Sum
Analysis
好冷鸭~会下雪么—— [每天刷题并不难0.0]
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
简单的动规~
Implement
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n, grid[0][0]));
for(int i=1; i<m; i++)
dp[i][0] = dp[i-1][0]+grid[i][0];
for(int j=1; j<n; j++)
dp[0][j] = dp[0][j-1]+grid[0][j];
for(int i=1; i<m; i++){
for(int j=1; j<n; j++)
dp[i][j] = min(dp[i-1][j], dp[i][j-1])+grid[i][j];
}
return dp[m-1][n-1];
}
};
可以对上面的dp[][]做一下优化,减少空间复杂度
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<int> dp(m, grid[0][0]);
for(int i=1; i<m; i++)
dp[i] = dp[i-1]+grid[i][0];
for(int j=1; j<n; j++){
dp[0] += grid[0][j];
for(int i=1; i<m; i++){
dp[i] = min(dp[i], dp[i-1]) + grid[i][j];
}
}
return dp[m-1];
}
};