avro schema php,Hadoop之AVRO

Avro是个支持多语言的数据序列化框架,支持c,c++,c#,python,java,php,ruby,java。他的诞生主要是为了弥补Writable只支持java语言的缺陷。

1AVRO简介

很多人会问类似的框架还有Thrift和Protocol,那为什么不使用这些框架,而要重新建一个框架呢,或者说Avro有哪些不同。首先,Avro和其他框架一样,数据是用与语言无关的schema描述的,不同的是Avro的代码生成是可选的,schema和数据存放在一起,而schema使得整个数据的处理过程并不生成代码、静态数据类型等,为了实现这些,需要假设读取数据的时候模式是已知的,这样就会产生紧耦合的编码,不再需要用户指定字段标识。

Avro的schema是JSON格式的,而编码后的数据是二进制格式(当然还有其他可选项)的,这样对于已经拥有JSON库的语言可以容易实现。

Avro还支持扩展,写的schema和读的schema不一定要是同一个,也就是说兼容新旧schema和新旧客户端的读取,比如新的schema增加了一个字段,新旧客户端都能读旧的数据,新客户端按新的schema去写数据,当旧的客户端读到新的数据时可以忽略新增的字段。

Avro还支持datafile文件,schema写在文件开头的元数据描述符里,Avro datafile支持压缩和分割,这就意味着可以做Mapreduce的输入。

2 Avro Schemas

2.1 Schema定义

Schema是JSON格式的,包括下面三种形式:

1.JSON string类型,主要是原生类型

2.JSON数组,主要是union

3.JSON对象,格式:

{"type": "typeName" ...attributes...}

包括除原生类型和union以外的其他类型,attributes可以包括avro未定义的属性,这些属性并不会影响数据的序列化。

2.2原生类型

总共8种原生类型null,boolean,int,long,float,double,bytes,strings.

1.原生类型不需要attributes

2.可以通过type指定“string” 和 {"type":"string"}是等同的

3.不同语言的实现是不同的,比如double类型,在C,C++和java里就是double,而在Python里是float,在Ruby里是Float.

2.3复合类型

1、records

records一般是序列化数据的最终展现单元,而且可以自己嵌套。{

"type":"record",

"name":"LongList",

"aliases":["LinkedLongs"],

"fields" : [

{"name":"value", "type": "long"},

{"name":"next", "type": ["LongList", "null"]}

]

}

2、enums,枚举。{ "type": "enum",

"name":"Suit",

"symbols" :["SPADES", "HEARTS", "DIAMONDS","CLUBS"]

}

3、arrays,数组。{"type": "array", "items":"string"}

4、maps

map,keys必须是string,所以这里只指定了values的类型{"type": "map", "values": "long"}

5、unions

不能包含两个或者两个以上没有name属性的相同类型["string", "null"]

6、fixed

size指定每个值占用多少个字节{"type": "fixed", "size": 16,"name": "md5"}

2.4三种mapping

generic mapping

针对一种语言来说可能有不同的mapping,但是所有语言必须支持动态mapping,在处理之前并不知道schema

specific mapping

java和C++都可以事先生成源代码,比generic mapping有更多domain-oriented的api

reflect mapping

使用反射将avro类型转换成java类型,但这种mapping比前两种都慢,故弃用。

3 Avro序列化与反序列化

3.1准备工作

将一下schema保存成文件StringPair.avsc,放在src/test/resources目录下。{

"type":"record",

"name":"StringPair",

"doc":"A pair ofstrings",

"fields":[

{"name":"left","type":"string"},

{"name":"right","type":"string"}

]

}

引入最新版本的avro时要主要,最新的avro包为1.7.4,依赖org.codehaus.jackson:jackson-core-asl:1.8.8包,但是maven库中已经没有该版本,所以要换成其他版本。

org.codehaus.jackson

jackson-core-asl

1.9.9

如果你用的是1.0.4版本的hadoop(或者其他版本),依赖于jackson-mapper-asl,如果与jackson-core-asl版本不一致就会产生找不到方法等异常你需要入引入相同版本。

org.codehaus.jackson

jackson-mapper-asl

1.9.9

3.2 generic方式package com.sweetop.styhadoop;

import junit.framework.Assert;

import org.apache.avro.Schema;

import org.apache.avro.generic.GenericData;

import org.apache.avro.generic.GenericDatumReader;

import org.apache.avro.generic.GenericDatumWriter;

import org.apache.avro.generic.GenericRecord;

import org.apache.avro.io.*;

import org.junit.Test;

import java.io.ByteArrayOutputStream;

import java.io.File;

import java.io.IOException;

/**

* Created with IntelliJ IDEA.

* User: lastsweetop

* Date: 13-8-5

* Time: 下午7:59

* To change this template use File| Settings | File Templates.

*/

public class TestGenericMapping {

@Test

public void test() throwsIOException {

//将schema从StringPair.avsc文件中加载

Schema.Parser parser = newSchema.Parser();

Schema schema =parser.parse(getClass().getResourceAsStream("/StringPair.avsc"));

//根据schema创建一个record示例

GenericRecord datum = newGenericData.Record(schema);

datum.put("left","L");

datum.put("right","R");

ByteArrayOutputStream out =new ByteArrayOutputStream();

//DatumWriter可以将GenericRecord变成edncoder可以理解的类型

DatumWriter writer = newGenericDatumWriter(schema);

//encoder可以将数据写入流中,binaryEncoder第二个参数是重用的encoder,这里不重用,所用传空

Encoder encoder =EncoderFactory.get().binaryEncoder(out, null);

writer.write(datum,encoder);

encoder.flush();

out.close();

DatumReader reader=newGenericDatumReader(schema);

Decoderdecoder=DecoderFactory.get().binaryDecoder(out.toByteArray(),null);

GenericRecordresult=reader.read(null,decoder);

Assert.assertEquals("L",result.get("left").toString());

Assert.assertEquals("R",result.get("right").toString());

}

}

result.get返回的是utf-8格式,需要调用toString方法,才能和字符串一致。

3.3 specific方式

首先使用avro-maven-plugin生成代码,pom的配置。

org.apache.avro

avro-maven-plugin

1.7.0

schemas

generate-sources

schema

StringPair.avsc

src/test/resources                         ${project.build.directory}/generated-sources/java

avro-maven-plugin插件绑定在generate-sources阶段,调用mvn generate-sources即可生成源代码,我们来看下生成的源代码:package com.sweetop.styhadoop;

/**

* Autogenerated by Avro

* DO NOT EDIT DIRECTLY

*/

@SuppressWarnings("all")

/** A pair of strings */

public class StringPair extendsorg.apache.avro.specific.SpecificRecordBase implementsorg.apache.avro.specific.SpecificRecord {

public static finalorg.apache.avro.Schema SCHEMA$ = new org.apache.avro.Schema.Parser().parse("{\"type\":\"record\",\"name\":\"StringPair\",\"doc\":\"Apair ofstrings\",\"fields\":[{\"name\":\"left\",\"type\":\"string\",\"avro.java.string\":\"String\"},{\"name\":\"right\",\"type\":\"string\"}]}");

@Deprecated

public java.lang.CharSequence left;

@Deprecated

public java.lang.CharSequenceright;

public org.apache.avro.SchemagetSchema() {

return SCHEMA$;

}

// Used by DatumWriter.  Applications should not call.

public java.lang.Object get(intfield$) {

switch (field$) {

case 0:

return left;

case 1:

return right;

default:

throw neworg.apache.avro.AvroRuntimeException("Bad index");

}

}

// Used by DatumReader.  Applications should not call.

@SuppressWarnings(value ="unchecked")

public void put(int field$,java.lang.Object value$) {

switch (field$) {

case 0:

left =(java.lang.CharSequence) value$;

break;

case 1:

right =(java.lang.CharSequence) value$;

break;

default:

throw neworg.apache.avro.AvroRuntimeException("Bad index");

}

}

/**

* Gets the value of the 'left'field.

*/

public java.lang.CharSequencegetLeft() {

return left;

}

/**

* Sets the value of the 'left'field.

*

* @param value the value toset.

*/

public voidsetLeft(java.lang.CharSequence value) {

this.left = value;

}

/**

* Gets the value of the 'right'field.

*/

public java.lang.CharSequencegetRight() {

return right;

}

/**

* Sets the value of the 'right'field.

*

* @param value the value toset.

*/

public voidsetRight(java.lang.CharSequence value) {

this.right = value;

}

}

为了兼容之前的版本生成了一组get,put方法,1.6.0后生成添加了getter/setter方法,还有一个与Builder的类,没什么用已经被我删掉

schama里的name里可以使用命名空间,如com.sweetop.styhadoop.StringPair,这样生成的源代码才会是带package的。

那我们来看如果使用这个生成的类,和generic方式有什么不同:package com.sweetop.styhadoop;

import junit.framework.Assert;

import org.apache.avro.Schema;

import org.apache.avro.io.*;

import org.apache.avro.specific.SpecificDatumReader;

import org.apache.avro.specific.SpecificDatumWriter;

import org.junit.Test;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

/**

* Created with IntelliJ IDEA.

* User: lastsweetop

* Date: 13-8-6

* Time: 下午2:19

* To change this template use File| Settings | File Templates.

*/

public class TestSprecificMapping {

@Test

public void test() throwsIOException {

//因为已经生成StringPair的源代码,所以不再使用schema了,直接调用setter和getter即可

StringPair datum=newStringPair();

datum.setLeft("L");

datum.setRight("R");

ByteArrayOutputStreamout=new ByteArrayOutputStream();

//不再需要传schema了,直接用StringPair作为范型和参数,

DatumWriter writer=newSpecificDatumWriter(StringPair.class);

Encoder encoder=EncoderFactory.get().binaryEncoder(out,null);

writer.write(datum,encoder);

encoder.flush();

out.close();

DatumReader reader=newSpecificDatumReader(StringPair.class);

Decoder decoder=DecoderFactory.get().binaryDecoder(out.toByteArray(),null);

StringPairresult=reader.read(null,decoder);

Assert.assertEquals("L",result.getLeft().toString());

Assert.assertEquals("R",result.getRight().toString());

}

}

同点总结一下:

schema->StringPair.class,     GenericRecord->StringPair。

4 AvroDatafile

4.1 datafile组成

datafile的组成如下图:

cbc4bc581477f34be8247c51fe4af1d1.png

datafile分为文件头是数据块,如果看图还是不明白,那么看这个应该会很清楚,datafile文件头的schema:{"type": "record", "name":"org.apache.avro.file.Header",

"fields" : [

{"name":"magic", "type": {"type": "fixed","name": "Magic", "size": 4}},

{"name":"meta", "type": {"type": "map","values": "bytes"}},

{"name":"sync", "type": {"type": "fixed","name": "Sync", "size": 16}},

]

}

要注意的是16字节的同步标记,这个标记意味着datafile支持随机读,并且可以做分割,也意味着可以作为mapreduce的输入。

DataFileReader可以通过同步标记去随机读datafile文件。void   seek(long position)

Move to a specific, known synchronization point, one returned fromDataFileWriter.sync() while writing.

void   sync(long position)

Move to the next synchronization point after a position.

4.2 datafile写操作

以代码注释的方式进行讲解://首先创建一个扩展名为avro的文件(扩展名随意,这里只是为了容易分辨)

File file = new File("data.avro");

//这行和前篇文章的代码一致,创建一个Generic Record的datum写入类

DatumWriter writer = newGenericDatumWriter(schema);

//和Encoder不同,DataFileWriter可以将avro数据写入到文件中

DataFileWriterdataFileWriter = new DataFileWriter(writer);

//创建文件,并且写入头信息

dataFileWriter.create(schema,file);

//写datum数据

dataFileWriter.append(datum);

dataFileWriter.append(datum);

dataFileWriter.close();

4.3 datafile读操作

以代码注释的方式进行讲解:

//这行也和前篇文章相同,Generic Record的datum读取类,有点不一样的就是这里不需要再传入schema,因为schema已经包含在datafile的头信息里:DatumReader reader=newGenericDatumReader();

//datafile文件的读取类,指定文件和datumreader

DataFileReaderdataFileReader=new DataFileReader(file,reader);

//测试下读写的schema是否一致

Assert.assertEquals(schema,dataFileReader.getSchema());

//遍历GenericRecord

for (GenericRecord record : dataFileReader){

System.out.println("left="+record.get("left")+",right="+record.get("right"));

}

5 Avro schema兼容

5.1兼容条件

在实际的应用中,因为应用版本的问题经常遇到读和写的schema不相同的情况,幸运的是avro已经提供了相关的解决方案。

下面图示说明:

d3ccea65db972510ab0a0f1a47cc9e90.png

5.2 Record兼容

在hadoop的实际应用中,更多是以record的形式进行交互,接下来我们重点讲解下record的兼容。

首先从读写schema的角度取考虑,读写schema的不同无外乎就两种,读的schema比写的schema多了一个field,读的schema比写的schema少了一个field,这两种情况处理起来都很简单。

先看下写的schema:{

"type":"record",

"name":"com.sweetop.styhadoop.StringPair",

"doc":"A pair ofstrings",

"fields":[

{"name":"left","type":"string"},

{"name":"right","type":"string"}

]

}

1、增加了field的情况

增加了field后的schema:{

"type":"record",

"name":"com.sweetop.styhadoop.StringPair",

"doc":"A pair ofstrings",

"fields":[

{"name":"left","type":"string"},

{"name":"right","type":"string"},

{"name":"description","type":"string","default":""}

]

}

用增加了field的schema取读数据。

new GenericDatumReader(null, newSchema),第一个参数为写的schema,第二个参数为读的schema,

由于读的是avro datafile,schema已经在文件的头部指定,所以写的schema可以忽略掉。@Test

public void testAddField()throws IOException {

//将schema从newStringPair.avsc文件中加载

Schema.Parser parser = newSchema.Parser();

Schema newSchema =parser.parse(getClass().getResourceAsStream("/addStringPair.avsc"));

File file = new File("data.avro");

DatumReader reader = newGenericDatumReader(null, newSchema);

DataFileReader dataFileReader = newDataFileReader(file, reader);

for (GenericRecord record :dataFileReader) {

System.out.println("left=" + record.get("left") +",right=" + record.get("right") + ",description="

+record.get("description"));

}

}

输出结果为:left=L,right=R,description=

left=L,right=R,description=

description用默认值空字符串代替。

2、减少了field的情况

减少了field的schema:{

"type":"record",

"name":"com.sweetop.styhadoop.StringPair",

"doc":"A pair ofstrings",

"fields":[

{"name":"left","type":"string"}

]

}

用减少了field的schema取读取:@Test

public void testRemoveField()throws IOException {

//将schema从StringPair.avsc文件中加载

Schema.Parser parser = newSchema.Parser();

Schema newSchema = parser.parse(getClass().getResourceAsStream("/removeStringPair.avsc"));

File file = newFile("data.avro");

DatumReader reader = newGenericDatumReader(null, newSchema);

DataFileReader dataFileReader = newDataFileReader(file, reader);

for (GenericRecord record :dataFileReader) {

System.out.println("left=" + record.get("left"));

}

}

输出结果为:left=L

left=L

删除的field被忽略掉。

3、新旧版本schema

如果从新旧版本的角度取考虑。

新版本schema比旧版本schema增加了一个字段

1.新版本取读旧版本的数据,使用新版本schema里新增field的默认值

2.旧版本读新版本的数据,新版本schema里新增field被旧版本的忽略掉

新版本schema比旧版半schema较少了一个字段

1.新版本读旧版本的数据,减少的field被新版本忽略掉

2.旧版本读新版本的数据,旧版本的schema使用起被删除field的默认值,如果没有就会报错,那么升级旧版本。

5.3别名

别名是另一个用于schema兼容的方法,可以将写的schema的field名字转换成读的schema的field,记住并不是加了aliases字段。

而是将写的filed的name属性变为aliases,读的时候只认name属性。

来看下加了别名的schema:{

"type":"record",

"name":"com.sweetop.styhadoop.StringPair",

"doc":"A pair ofstrings",

"fields":[

{"name":"first","type":"string","aliases":["left"]},

{"name":"second","type":"string","aliases":["right"]}

]

}

使用别名schema去读数据,这里不能再用left,right,而要用first,second:@Test

public void testAliasesField()throws IOException {

//将schema从StringPair.avsc文件中加载

Schema.Parser parser = newSchema.Parser();

Schema newSchema =parser.parse(getClass().getResourceAsStream("/aliasesStringPair.avsc"));

File file = newFile("data.avro");

DatumReader reader = newGenericDatumReader(null, newSchema);

DataFileReaderdataFileReader = new DataFileReader(file, reader);

for (GenericRecord record :dataFileReader) {

System.out.println("first=" +record.get("first")+",second="+record.get("second"));

}

}

输出结果为:first=L,second=R

first=L,second=R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值