摘要:
Bystander effects following exposure to α-particles have been observed in many experimental systems, and imply that linearly extrapolating low dose risks from high dose data might materially underestimate risk. Brenner and Sachs (2002 Int. J. Radiat. Biol. 78 593-604; 2003 Health Phys. 85 103-8) have recently proposed a model of the bystander effect which they use to explain the inverse dose rate effect observed for lung cancer in underground miners exposed to radon daughters. In this paper we fit the model of the bystander effect proposed by Brenner and Sachs to 11 cohorts of underground miners, taking account of the covariance structure of the data and the period of latency between the development of the first pre-malignant cell and clinically overt cancer. We also fitted a simple linear relative risk model, with adjustment for age at exposure and attained age. The methods that we use for fitting both models are different from those used by Brenner and Sachs, in particular taking account of the covariance structure, which they did not, and omitting certain unjustifiable adjustments to the miner data. The fit of the original model of Brenner and Sachs (with 0 y period of latency) is generally poor, although it is much improved by assuming a 5 or 6 y period of latency from the first appearance of a pre-malignant cell to cancer. The fit of this latter model is equivalent to that of a linear relative risk model with adjustment for age at exposure and attained age. In particular, both models are capable of describing the observed inverse dose rate effect in this data set
展开