import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, Input
from tensorflow.keras.models import Model
def build_super_resolution_model():
inputs = Input(shape=(64, 64, 3))
x = Conv2D(64, 5, padding='same', activation='relu')(inputs)
x = Conv2D(64, 5, padding='same', activation='relu')(x)
x = Conv2D(64, 5, padding='same', activation='relu')(x)
x = Conv2DTranspose(64, 5, padding='same', activation='relu')(x)
x = Conv2DTranspose(64, 5, padding='same', activation='relu')(x)
x = Conv2D(3, 5, padding='same', activation='sigmoid')(x)
return Model(inputs, x)
# Hyperparameters
epochs = 10
batch_size = 1
# Load dataset (example)
def load_data():
# Placeholder function to load dataset
return np.random.rand(10, 64, 64, 3)
# Initialize model
model = build_super_resolution_model()
model.compile(optimizer=tf.keras.optimizers.Adam(1e-4), loss='mean_squared_error')
# Training loop
for epoch in range(epochs):
low_res_images = load_data()
high_res_images = np.random.rand(batch_size, 256, 256, 3) # Placeholder high-res images
loss = model.train_on_batch(low_res_images, high_res_images)
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss}')
if (epoch + 1) % 5 == 0:
output_images = model.predict(low_res_images)
for i in range(batch_size):
plt.imshow(output_images[i])
plt.axis('off')
plt.savefig(f'super_resolution_image_{epoch+1}_{i}.png')
plt.close()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.