Minimum Size Subarray Sum 最短子数组之和

本文介绍了一种算法问题,即寻找一个数组中满足特定条件的子数组的最小长度。提出了两种解决方案,一种时间复杂度为O(n),另一种为O(nlogn)。通过移动窗口和二分查找的方法,有效地解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

click to show more practice.

More practice:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.

这道题给定了我们一个数字,让我们求子数组之和大于等于给定值的最小长度,跟之前那道 Maximum Subarray 最大子数组有些类似,并且题目中要求我们实现O(n)和O(nlgn)两种解法,那么我们先来看O(n)的解法,我们需要定义两个指针left和right,分别记录子数组的左右的边界位置,然后我们让right向右移,直到子数组和大于等于给定值或者right达到数组末尾,此时我们更新最短距离,并且将left像右移一位,然后再sum中减去移去的值,然后重复上面的步骤,直到right到达末尾,且left到达临界位置,即要么到达边界,要么再往右移动,和就会小于给定值。代码如下:

思路

这道题需要比较巧妙的思考,不能直接蛮干,比如说移动窗口,再更新它的窗口最小长度;或者先计算累计和,通过加上给定的值,去得到窗口信息,再更新最小长度。

实现

移动窗口

// O(n)
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        if (nums.empty()) return 0;
        int left = 0, right = 0, sum = 0, len = nums.size(), res = len + 1;
        while (right < len) {
            while (sum < s && right < len) {
                sum += nums[right++];
            }
            while (sum >= s) {
                res = min(res, right - left);
                sum -= nums[left++];
            }
        }
        return res == len + 1 ? 0 : res;
    }
};

同样的思路,换另外一种写法

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int res = INT_MAX, left = 0, sum = 0;
        for (int i = 0; i < nums.size(); ++i) {
            sum += nums[i];
            while (left <= i && sum >= s) {
                res = min(res, i - left + 1);
                sum -= nums[left++];
            }
        }
        return res == INT_MAX ? 0 : res;
    }
};

二分法

// O(nlgn)
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int len = nums.size(), sums[len + 1] = {0}, res = len + 1;
        for (int i = 1; i < len + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1];
        for (int i = 0; i < len + 1; ++i) {
            int right = searchRight(i + 1, len, sums[i] + s, sums);
            if (right == len + 1) break;
            if (res > right - i) res = right - i;
        }
        return res == len + 1 ? 0 : res;
    }
    int searchRight(int left, int right, int key, int sums[]) {
        while (left <= right) {
            int mid = (left + right) / 2;
            if (sums[mid] >= key) right = mid - 1;
            else left = mid + 1;
        }
        return left;
    }
};

这个解法要用到二分查找法,思路是,我们建立一个比原数组长一位的sums数组,其中sums[i]表示nums数组中[0, i - 1]的和,然后我们对于sums中每一个值sums[i],用二分查找法找到子数组的右边界位置,使该子数组之和大于sums[i] + s,为什么要加上s呢,因为前面我们已经计算出了加上数组前面的和,那么我们只需要判断当前的值加上s等于后面的哪个值,就可以得出后面的值的下标,其实那个s就是前面和后面之间的原数组的值的和,然后我们更新最短长度的距离即可。

或者不需要新加一个函数

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int res = INT_MAX, n = nums.size();
        vector<int> sums(n + 1, 0);
        for (int i = 1; i < n + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1];
        for (int i = 0; i < n; ++i) {
            int left = i + 1, right = n, t = sums[i] + s;
            while (left <= right) {
                int mid = left + (right - left) / 2;
                if (sums[mid] < t) left = mid + 1;
                else right = mid - 1;
            }
            if (left == n + 1) break;
            res = min(res, left - i);
        }
        return res == INT_MAX ? 0 : res;
    }
};

总结

看来并不能直接看别人的说的去实现,还是要自己去理解才行,每个人有每个人自己的理解。

转载于:https://www.cnblogs.com/George1994/p/6399876.html

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在 IT 领域,文档格式转换是常见需求,尤其在处理多种文件类型时。本文将聚焦于利用 Java 技术栈,尤其是 Apache POI 和 iTextPDF 库,实现 doc、xls(涵盖 Excel 2003 及 Excel 2007+)以及 txt、图片等格式文件向 PDF 的转换,并实现在线浏览功能。 先从 Apache POI 说起,它是一个强大的 Java 库,专注于处理 Microsoft Office 格式文件,比如 doc 和 xls。Apache POI 提供了 HSSF 和 XSSF 两个 API,其中 HSSF 用于读写老版本的 BIFF8 格式(Excel 97-2003),XSSF 则针对新的 XML 格式(Excel 2007+)。这两个 API 均具备读取和写入工作表、单元格、公式、样式等功能。读取 Excel 文件时,可通过创建 HSSFWorkbook 或 XSSFWorkbook 对象来打开相应格式的文件,进而遍历工作簿中的每个 Sheet,获取行和列数据。写入 Excel 文件时,创建新的 Workbook 对象,添加 Sheet、Row 和 Cell,即可构建新 Excel 文件。 再看 iTextPDF,它是一个用于生成和修改 PDF 文档的 Java 库,拥有丰富的 API。创建 PDF 文档时,借助 Document 对象,可定义页面尺寸、边距等属性来定制 PDF 外观。添加内容方面,可使用 Paragraph、List、Table 等元素将文本、列表和表格加入 PDF,图片可通过 Image 类加载插入。iTextPDF 支持多种字体和样式,可设置文本颜色、大小、样式等。此外,iTextPDF 的 TextRenderer 类能将 HTML、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值