150. Evaluate Reverse Polish Notation逆波兰表达式

本文介绍了一种利用栈解决逆波兰表达式计算问题的方法。通过分析逆波兰表达式的特性,文章详细阐述了如何通过栈来高效地计算由整数和基本算术运算符组成的表达式的值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[抄题]:

Evaluate the value of an arithmetic expression in Reverse Polish Notation.

Valid operators are +-*/. Each operand may be an integer or another expression.

Note:

  • Division between two integers should truncate toward zero.
  • The given RPN expression is always valid. That means the expression would always evaluate to a result and there won't be any divide by zero operation.

Example 1:

Input: ["2", "1", "+", "3", "*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9

Example 2:

Input: ["4", "13", "5", "/", "+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6

 [暴力解法]:

时间分析:

空间分析:

 [优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

怕写:也没那么难,分为加减乘除来讨论下就可以了

[英文数据结构或算法,为什么不用别的数据结构或算法]:


逆波兰表达式,英文为 Reverse Polish notation,跟波兰表达式(Polish notation)相对应。平时我们习惯将表达式写成 (1 + 2) * (3 + 4),加减乘除等运算符写在中间,因此称呼为中缀表达式。而波兰表达式的写法为 (* (+ 1 2) (+ 3 4)),将运算符写在前面,因而也称为前缀表达式。逆波兰表达式的写法为 ((1 2 +) (3 4 +) *),将运算符写在后面,因而也称为后缀表达式。波兰表达式和逆波兰表达式有个好处,就算将圆括号去掉也不会引起歧义。上述的波兰表达式去掉圆括号,变为 * + 1 2 + 3 4。逆波兰表达式去掉圆括号,变成 1 2 + 3 4 + * 也是无歧义并可以计算的。事实上我们通常说的波兰表达式和逆波兰表达式就是去掉圆括号的。而中缀表达式,假如去掉圆括号,将 (1 + 2) * (3 + 4) 写成 1 + 2 * 3 + 4,就改变原来意思了。为什么叫波兰表达式和逆波兰表达式呢?是为了纪念波兰的数理科学家 Jan Łukasiewicz,其在著作中提到。我在1924年突然有了一个无需括号的表达方法,我在文章第一次使用了这种表示法。现实中,波兰表达式和逆波兰表达式,具体用于什么地方呢?波兰表达式(前缀表达式),实际是抽象语法树的表示方式,比如中缀 (1 + 2) * (3 + 4) 编译时转成的抽象语法树为     *
  /    \
 +      + 
/ \    / \
1  2  3   4 
这个操作符就是根节点,操作数为左右子节点。我们将这棵树用符号表达出来,可以写成 (* (+ 1 2) (+ 3 4))。这实际就是 Lisp 的 S-表达式。S-表达式可看成将整棵抽象语法树都写出来,每层节点都加上圆括号。至于逆波兰表示式,可用栈进行计算,天生适合于基于栈的语言。遇到数字就将数字压栈,遇到操作符,就将栈顶的两个元素取出计算,将计算结果再压入栈。比较典型的基于栈的语言为 Forth 和 PostScript。

 

[一句话思路]:

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

用stack,注意一下:先pop出来的是晚进去的。a-b a/b都当作b

[一刷]:

字符要用.equals函数,只有单个的字母才用等号

[二刷]:

[三刷]:

[四刷]:

[五刷]:

  [五分钟肉眼debug的结果]:

[总结]:

[复杂度]:Time complexity: O(n) Space complexity: O(n)

[算法思想:迭代/递归/分治/贪心]:

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

 [代码风格] :

 [是否头一次写此类driver funcion的代码] :

 [潜台词] :

 

class Solution {
    public int evalRPN(String[] tokens) {
        //cc
        if (tokens == null || tokens.length == 0) return 0;
        
        //ini: stack
        Stack<Integer> stack = new Stack<>();
        
        //for loop: 5 cases
        for (String s : tokens) {
            //string should use .equals function
            if (s.equals("+")) {
                stack.push(stack.pop() + stack.pop());
            }else if (s.equals("-")) {
                int b = stack.pop();
                int a = stack.pop();
                stack.push(a - b);
            }else if (s.equals("*")) {
                stack.push(stack.pop() * stack.pop());
            }else if (s.equals("/")) {
                 int b = stack.pop();
                 int a = stack.pop();
                 stack.push(a / b);
                      }else {
                 stack.push(Integer.valueOf(s));         
                      }
        }
        
        return stack.pop();
    }
}
View Code

 

转载于:https://www.cnblogs.com/immiao0319/p/9372902.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值