【LeetCode】063. Unique Paths II

本文探讨了在一个含有障碍物的网格中计算从左上角到右下角的唯一路径数量的问题。通过动态规划的方法,给出了两种解决方案,并详细解释了如何在遇到障碍物时调整路径计数。

题目:

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

  

The total number of unique paths is 2.

Note: m and n will be at most 100.

题解:

Solution 1 ()(未优化)

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if(obstacleGrid.empty() || obstacleGrid[0].empty()) return 0;
        int m = obstacleGrid.size(), n = obstacleGrid[0].size();
        vector<int> dp(n,0);
        dp[0] = 1;
        for(int i=0; i<m; ++i) {
            for(int j=0; j<n; ++j) {
                if(obstacleGrid[i][j] == 1)
                    dp[j] = dp[j-1];
                else dp[j] += dp[j-1];
            }
        }    
        return dp[n-1];
    }
};

Solution 2 ()

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if(obstacleGrid.empty() || obstacleGrid[0].empty()) return 0;
        int m = obstacleGrid.size(), n = obstacleGrid[0].size();
        vector<int> dp(n,0);
        dp[0] = 1;
        for(int i=0; i<m; ++i) {
            for(int j=0; j<n; ++j) {
                if(obstacleGrid[i][j] == 1)    
                    dp[j] = 0;
                else {
                    if(j > 0)
                        dp[j] += dp[j-1];
                }
            }
        }    
        return dp[n-1];
    }
};

 

转载于:https://www.cnblogs.com/Atanisi/p/6817007.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值