BZOJ1799 self 同类分布 数位dp

本文介绍了解决BZOJ1799self同类分布问题的一种深度动态规划方法,该方法通过计算指定范围内各位数字之和能整除原数的数的数量来解决问题。通过对DP状态的有效定义和优化,成功解决了大规模数据范围内的问题。

BZOJ1799self 同类分布

去博客园看该题解

题意

   给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。
  【约束条件】1 ≤ a ≤ b ≤ 10^18

题解

1.所有的位数之和<9*18=162
2.所以,dp[i][j][k][m]表示有i位(允许有前导0),数位和为k,模数为m,前i位与模数的模为j的符合条件的数的个数。这样要炸空间,怎么办!!其实这个dp的最后一维可以省去,因为对于不同的m值,dp互不相干。这样还是要超时的,有5亿多。于是就要卡常数,具体见代码里面的枚举的上下界。

代码

#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <cmath>
using namespace std;
typedef long long LL;
LL L,R;
LL dp[20][163][163];
int a[20],mod;
LL dfs(int d,int ds,int c,bool full){
    if (d==0)
        return (ds==0&&c==0)?1:0;
    if (!full&&dp[d][ds][c]!=-1)
        return dp[d][ds][c];
    LL ans=0;
    int tp=min(ds,full?a[d]:9);
    for (int i=max(0,ds-9*(d-1));i<=tp;i++)
        ans+=dfs(d-1,ds-i,(c*10+i)%mod,full&&i==tp);
    if (!full)
        return dp[d][ds][c]=ans;
    return ans;
}
LL solve(LL n){
    if (n==0)
        return 0;
    int d=0;
    while (n>0)
        a[++d]=n%10,n/=10;
    LL ans=0;
    for (int i=1;i<=d*9;i++){
        memset(dp,-1,sizeof dp);
        mod=i;
        ans+=dfs(d,i,0,1);
    }
    return ans;
}
int main(){
    freopen("self.in","r",stdin);
    freopen("self.out","w",stdout);
    scanf("%lld%lld",&L,&R);
    printf("%lld",solve(R)-solve(L-1));
    fclose(stdin);fclose(stdout);
    return 0;
}

 

转载于:https://www.cnblogs.com/zhouzhendong/p/BZOJ1799.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值