hdu 1517 A Multiplication Game 段sg 博弈 难度:0

本文探讨了乘法游戏的胜利策略,并提供了一个高效算法实现。通过分析数值区间内的胜负规律,玩家可以准确预测谁将赢得游戏。利用数学原理简化输入到输出的过程,实现了一种快速判断胜负的方法。

A Multiplication Game

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3832    Accepted Submission(s): 2183


Problem Description
Stan and Ollie play the game of multiplication by multiplying an integer p by one of the numbers 2 to 9. Stan always starts with p = 1, does his multiplication, then Ollie multiplies the number, then Stan and so on. Before a game starts, they draw an integer 1 < n < 4294967295 and the winner is who first reaches p >= n.
 

 

Input
Each line of input contains one integer number n.
 

 

Output
For each line of input output one line either 

Stan wins. 

or 

Ollie wins.

assuming that both of them play perfectly.
 

 

Sample Input
162 17 34012226
 

 

Sample Output
Stan wins. Ollie wins. Stan wins.
 

 

Source

 

打了sg表...1 肯定必败 (2,9)必胜 (10,18)必败,(19,36)必胜...总之就是((2*9)^i+1,(2*9)^i*9)必败,其他必胜,总结规律之后,只要判断在哪个区间即可

数据范围本来以为会爆longlong,但是*9没有爆longlong 

 

#include <cstdio>
#include <cstring>
using namespace std;
long long n;
int main(){
    while(scanf("%I64d",&n)!=EOF){
        long long tn=1;
        bool fl=false;
        while(n>tn){
            tn*=9;fl=true;
            if(n<=tn)break;
            tn*=2;fl=false;
        }
        if(fl)printf("Stan wins.\n");
        else printf("Ollie wins.\n");
    }
    return  0;
}

  

转载于:https://www.cnblogs.com/xuesu/p/4104185.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值