UVA 11354 Bond

本文介绍了一种结合LCA算法与最小生成树求解路径最大权值的应用问题,通过具体题目解析,展示了如何利用LCA算法求解两节点间路径上的最大边权。

Bond

Time Limit: 8000ms
Memory Limit: 131072KB
This problem will be judged on  UVA. Original ID: 11354
64-bit integer IO format: %lld      Java class name: Main
 

Once again, James Bond is on his way to saving the world. Bond's latest mission requires him to travel between several pairs of cities in a certain country.

 

The country has N cities (numbered by 1, 2, . . ., N), connected by M bidirectional roads. Bond is going to steal a vehicle, and drive along the roads from city s to city t. The country's police will be patrolling the roads, looking for Bond, however, not all roads get the same degree of attention from the police.

 

More formally, for each road MI6 has estimated its dangerousness, the higher it is, the more likely Bond is going to be caught while driving on this road. Dangerousness of a path from s to t is defined as the maximum dangerousness of any road on this path.

 

Now, it's your job to help Bond succeed in saving the world by finding the least dangerous paths for his mission.

 

 

Input

There will be at most 5 cases in the input file.

The first line of each case contains two integers NM (2 ≤ N≤ 50000, 1≤ M ≤ 100000) number of cities and roads. The next M lines describe the roads. The i-th of these lines contains three integers: xiyidi (1 ≤ xiyi ≤ N, 0 ≤ di ≤ 109) - the numbers of the cities connected by the ith road and its dangerousness.

 

Description of the roads is followed by a line containing an integer Q (1 ≤ Q ≤ 50000), followed by Q lines, the i-th of which contains two integers si and ti (1 ≤ siti ≤ N,si != ti).

 

Consecutive input sets are separated by a blank line.

 

Output

For each case, output Q lines, the i-th of which contains the minimum dangerousness of a path between cities si and ti. Consecutive output blocks are separated by a blank line.

 

The input file will be such that there will always be at least one valid path.

 

Sample Input

4 5

1 2 10

1 3 20

1 4 100

2 4 30

3 4 10

2

1 4

4 1

 

2 1

1 2 100

1

1 2

Output for Sample Input

20

20

 

100

 

解题:LCA ,对最小生成树进行LCA查询

 

 1 #include <bits/stdc++.h>
 2 #define pii pair<int,int>
 3 using namespace std;
 4 const int maxn = 50010;
 5 int n,m;
 6 vector< pii >g[maxn];
 7 struct arc {
 8     int u,v,w;
 9     bool operator<(const arc &t)const {
10         return w < t.w;
11     }
12 } e[200000];
13 int uf[maxn],d[maxn],fa[maxn][21],maxcost[maxn][21];
14 int Find(int x) {
15     if(x != uf[x]) uf[x] = Find(uf[x]);
16     return uf[x];
17 }
18 void dfs(int u,int f) {
19     for(int i = g[u].size()-1; i >= 0; --i) {
20         if(g[u][i].first == f) continue;
21         d[g[u][i].first] = d[u] + 1;
22         maxcost[g[u][i].first][0] = g[u][i].second;
23         fa[g[u][i].first][0] = u;
24         dfs(g[u][i].first,u);
25     }
26 }
27 void init() {
28     for(int j = 1; j <= 20; ++j)
29         for(int i = 1; i <= n; ++i) {
30             fa[i][j] = fa[fa[i][j-1]][j-1];
31             maxcost[i][j] = max(maxcost[i][j-1],maxcost[fa[i][j-1]][j-1]);
32         }
33 }
34 int LCA(int s,int t) {
35     if(d[s] < d[t]) swap(s,t);
36     int log,ret = INT_MIN;
37     for(log = 1; (1<<log) <= d[s]; ++log);
38     for(int i = log-1; i >= 0; --i)
39         if(d[s] - (1<<i) >= d[t]) {
40             ret = max(ret,maxcost[s][i]);
41             s = fa[s][i];
42         }
43     if(s == t) return ret;
44     for(int i = log-1; i >= 0; --i) {
45         if(fa[s][i] != -1 && fa[s][i] != fa[t][i]) {
46             ret = max(ret,maxcost[s][i]);
47             ret = max(ret,maxcost[t][i]);
48             s = fa[s][i];
49             t = fa[t][i];
50         }
51     }
52     ret = max(ret,maxcost[s][0]);
53     ret = max(ret,maxcost[t][0]);
54     return ret;
55 }
56 int main() {
57     int u,v;
58     bool flag = false;
59     while(~scanf("%d%d",&n,&m)) {
60         if(flag) puts("");
61         flag = true;
62         for(int i = 0; i < m; ++i)
63             scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
64         sort(e,e+m);
65         for(int i = 0; i < maxn; ++i) {
66             g[i].clear();
67             uf[i] = i;
68         }
69         for(int i = 0; i < m; ++i) {
70             int u = Find(e[i].u);
71             int v = Find(e[i].v);
72             if(u == v) continue;
73             uf[u] = v;
74             g[u].push_back(pii(v,e[i].w));
75             g[v].push_back(pii(u,e[i].w));
76         }
77         memset(maxcost,0,sizeof maxcost);
78         memset(d,0,sizeof d);
79         memset(fa,-1,sizeof fa);
80         fa[1][0] = -1;
81         dfs(1,-1);
82         init();
83         scanf("%d",&m);
84         for(int i = 0; i < m; ++i) {
85             scanf("%d%d",&u,&v);
86             printf("%d\n",LCA(u,v));
87         }
88     }
89     return 0;
90 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/4699320.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值