Codeforces Breaking Good

本文介绍了一种在特定游戏场景中寻找最优逃逸路径的方法。该方法需要在一张包含n个城市和m条道路的地图上找到从城市1到城市n的最短路径,并修复此路径上的所有损坏道路,同时摧毁其他所有完好道路以阻止警察追击。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Breaking Good

time limit per test 2 seconds

memory limit per test 256 megabytes

Breaking Good is a new video game which a lot of gamers want to have. There is a certain level in the game that is really difficult even for experienced gamers.

Walter William, the main character of the game, wants to join a gang called Los Hermanos (The Brothers). The gang controls the whole country which consists of n cities with m bidirectional roads connecting them. There is no road is connecting a city to itself and for any two cities there is at most one road between them. The country is connected, in the other words, it is possible to reach any city from any other city using the given roads.

The roads aren't all working. There are some roads which need some more work to be performed to be completely functioning.

The gang is going to rob a bank! The bank is located in city 1. As usual, the hardest part is to escape to their headquarters where the police can't get them. The gang's headquarters is in city n. To gain the gang's trust, Walter is in charge of this operation, so he came up with a smart plan.

First of all the path which they are going to use on their way back from city 1 to their headquarters n must be as short as possible, since it is important to finish operation as fast as possible.

Then, gang has to blow up all other roads in country that don't lay on this path, in order to prevent any police reinforcements. In case of non-working road, they don't have to blow up it as it is already malfunctional.

If the chosen path has some roads that doesn't work they'll have to repair those roads before the operation.

Walter discovered that there was a lot of paths that satisfied the condition of being shortest possible so he decided to choose among them a path that minimizes the total number of affected roads (both roads that have to be blown up and roads to be repaired).

Can you help Walter complete his task and gain the gang's trust?

Input

The first line of input contains two integers n, m (2 ≤ n ≤ 105, ), the number of cities and number of roads respectively.

In following m lines there are descriptions of roads. Each description consists of three integers x, y, z (1 ≤ x, y ≤ n, ) meaning that there is a road connecting cities number x and y. If z = 1, this road is working, otherwise it is not.

Output

In the first line output one integer k, the minimum possible number of roads affected by gang.

In the following k lines output three integers describing roads that should be affected. Each line should contain three integers x, y, z (1 ≤ x, y ≤ n, ), cities connected by a road and the new state of a road. z = 1 indicates that the road between cities x and y should be repaired and z = 0 means that road should be blown up.

You may output roads in any order. Each affected road should appear exactly once. You may output cities connected by a single road in any order. If you output a road, it's original state should be different from z.

After performing all operations accroding to your plan, there should remain working only roads lying on some certain shortest past between city 1 and n.

If there are multiple optimal answers output any.

Examples

input

2 1
1 2 0

output

1
1 2 1

input

4 4
1 2 1
1 3 0
2 3 1
3 4 1

output

3
1 2 0
1 3 1
2 3 0

input

8 9
1 2 0
8 3 0
2 3 1
1 4 1
8 7 0
1 5 1
4 6 1
5 7 0
6 8 0

output

3
2 3 0
1 5 0
6 8 1

Note

In the first test the only path is 1 - 2

In the second test the only shortest path is 1 - 3 - 4

In the third test there are multiple shortest paths but the optimal is 1 - 4 - 6 - 8




大概意思就是给定 n 个点, m 条边的有向图,边权都为 1,一些需要维修。
你需要选择1条 1 到 n 的最短路,将它们修好,并炸毁其它所
有不在路径上的完好的路。
若有多条最短路,选择影响值最小的。
影响值 = 维修的路数 + 炸毁的路数。


我大概想了一下,应该就是找一条最短路上的边权最大。。。
然后这个dp是按照dis转移的,必须是dis + 1才可以满足最短路。。。
但是好像可以分层图啥的。。。不会啊


#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
struct lpl{
    int to, dis;
}lin, from[maxn];
struct ld{
    int a, b;
    bool operator < (const ld &A)const{
        if(a == A.a) return b < A.b;
        return a < A.a;
    }
}asd;
int n, m, r, sum, dis[maxn], f[maxn];
bool vis[maxn];
vector<int> edge[maxn];
vector<lpl> point[maxn];
queue<int> q;
set<ld> s;

inline void putit()
{
    scanf("%d%d", &n, &m);
    for(int a, b, i = 1; i <= m; ++i){
        scanf("%d%d%d", &a, &b, &lin.dis); sum += lin.dis; 
        edge[a].push_back(b); edge[b].push_back(a);
        lin.to = b; point[a].push_back(lin);
        lin.to = a; point[b].push_back(lin);
    }
}

inline void spfa()
{
    int now, qwe; q.push(1); memset(dis, 0x3f, sizeof(dis)); dis[1] = 0;
    while(!q.empty()){
        now = q.front(); q.pop(); vis[now] = false;
        for(int i = edge[now].size() - 1; i >= 0; --i){
            qwe = edge[now][i];
            if(dis[qwe] > dis[now] + 1){
                dis[qwe] = dis[now] + 1;
                if(!vis[qwe]){
                    vis[qwe] = true; q.push(qwe);
                }
            }
        }
    }
}

int dp(int t)
{
    if(vis[t]) return f[t];
    vis[t] = true;
    for(int i = point[t].size() - 1; i >= 0; --i){
        int now = point[t][i].to;
        if(dis[t] != dis[now] + 1) continue;
        if(f[t] <= dp(now) + point[t][i].dis){
            f[t] = f[now] + point[t][i].dis;
            from[t].to = now; from[t].dis = point[t][i].dis;
        }
    }
    return f[t];
}

inline void workk()
{
    printf("%d\n", sum + dis[n] - 2 * dp(n)); int t = n;
    while(t != 1){
        asd.a = t; asd.b = from[t].to; 
        if(asd.a > asd.b) swap(asd.a, asd.b); s.insert(asd); t = from[t].to;
    }
    for(int i = 1; i <= n; ++i){
        for(int j = point[i].size() - 1; j >= 0; --j){
            lin = point[i][j]; if(lin.to > i) continue;
            asd.a = lin.to; asd.b = i;
            if(s.count(asd)){
                if(!lin.dis) printf("%d %d 1\n", asd.a, asd.b);
            }
            else{
                if(lin.dis) printf("%d %d 0\n", asd.a, asd.b);
            }
        }
    }
}

int main()
{
    putit();
    spfa();
    workk();
    return 0;
}

转载于:https://www.cnblogs.com/LLppdd/p/9229205.html

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值