2013长春赛区网络赛的1009题
比赛的时候这道题英勇的挂掉了,原因是写错了一个系数,有时候粗心比脑残更可怕
本题是关于Bell数,关于Bell数的详情请见维基:http://en.wikipedia.org/wiki/Bell_number
其中有一句话是这么说的: And they satisfy "Touchard's congruence": If p is any prime bumber then
但95041567不是素数, 分解之后发现 95041567 = 31 × 37 × 41 × 43 × 47
按照上述递推式,利用矩阵快速幂可以得到 Bn mod p, (p = 31, 37, 41, 43, 47),因为p最大47,所以矩阵快速幂O(p^3 * log(n/p))不会超时,
当然要先利用以下公式把B1-B47预处理出来:
得到5个Bn mod p (p = 31, 37, 41, 43, 47)之后,怎样得到Bn mod Πp 呢?
利用中国剩余定理可以完美的解决上述问题
详情见代码:
#include <cstdio>
#include <cstring>
#define MOD 95041567
#define LL long long
const int maxn = 50; //必须加 const,否则编译错误
LL x[5] = {31, 37, 41, 43, 47};
LL X;
class Matrix {
public:
LL val[maxn][maxn];
Matrix() {
memset(val, 0, sizeof(val));
}
Matrix operator*(const Matrix& c) const {
Matrix res;
for (int i = 0; i < X; ++i)
for (int j = 0; j < X; ++j)
for (int k = 0; k < X; ++k) {
res.val[i][j] += val[i][k] * c.val[k][j];
res.val[i][j] = (res.val[i][j] + X) % X; //防止矩阵元素变为负数,若不需要,去掉"+MOD"
}
return res;
}
Matrix operator*=(const Matrix& c) {
*this = *this * c;
return *this;
}
Matrix Pow(LL k) { //返回one^k
Matrix res = Zero();
Matrix step = One();
while (k) {
if (k & 1)
res *= step;
k >>= 1;
step *= step;
}
return res;
}
Matrix Zero() const {
Matrix res;
for (int i = 0; i < X; ++i)
res.val[i][i] = 1;
return res;
}
Matrix One() const {
Matrix res;
for (int i = 0; i < X - 1; ++i)
res.val[i][i] = res.val[i + 1][i] = 1;
res.val[0][X - 1] = res.val[1][X - 1] = res.val[X - 1][X - 1] = 1;
return res;
}
};
void gcd(LL a, LL b, LL& d, LL& xx, LL& y) {
if (!b) {
d = a, xx = 1, y = 0;
} else {
gcd(b, a % b, d, y, xx);
y -= xx * (a / b);
}
}
LL china(LL n, LL* a, LL* m) {
LL M = 1, d, xx = 0, y;
for (int i = 0; i < n; ++i) M *= m[i];
for (int i = 0; i < n; ++i) {
LL w = M / m[i];
gcd(m[i], w, d, d, y);
xx = (xx + y * w * a[i]) % M;
}
return (xx + M) % M;
}
LL c[50][50], f[50], a[5];
int main() {
int T;
for (int i = 0; i < 50; ++i) {
c[i][0] = c[i][i] = 1;
for (int j = 1; j < i; ++j)
c[i][j] = (c[i-1][j] + c[i - 1][j - 1]) % MOD;
}
f[0] = 1;
f[1] = 1;
for (int i = 2; i < 50; ++i) {
for (int j = 0; j < i; ++j)
f[i] = (f[i] + c[i - 1][j] * f[j]) % MOD;
}
scanf("%d", &T);
while (T--) {
LL n;
scanf("%I64d", &n);
if (n < 50) {
printf("%I64d\n", f[n]);
continue;
}
memset(a, 0 ,sizeof(a));
for (int i = 0; i < 5; ++i) {
X = x[i];
Matrix m;
m = m.Pow(n / X);
for (int j = 0; j < X; ++j)
a[i] = (a[i] + f[j] * m.val[j][n % X]) % X;
}
printf("%I64d\n", china(5, a, x));
}
return 0;
}