583. Delete Operation for Two Strings

本文详细介绍了如何使用动态规划解决编辑距离问题,通过删除操作使两个字符串相同。文章提供了具体实现代码,并解释了DP数组的含义及其初始化过程。

Problem statement:

Given two words word1 and word2, find the minimum number of steps required to make word1 and word2 the same, where in each step you can delete one character in either string.

Example 1:

Input: "sea", "eat"
Output: 2
Explanation: You need one step to make "sea" to "ea" and another step to make "eat" to "ea".

Note:

  1. The length of given words won't exceed 500.
  2. Characters in given words can only be lower-case letters.

Solution:

This is a DP solution which is like 72. Edit Distance. DP array is dp[m + 1][n + 1], m = word1.size(), n = word2.size();

dp[i][j] means how many operations need to do if the first i chars in word1 match the first j chars in word2.

I believe "the first i and j" is essential to understand the key point of the DP solution.

Initialization:

dp[0][0 ... n] = 0 ... n : means the operations we want to match the word1 and word2 if  word1 is empty.

dp[0 ... m][0] = 0 ... m : means the operations we want to match the word1 and word2 if  word2 is empty.

DP formula:

There are two situations for dp[i][j]

word1[i] == word2[j] --> dp[i][j] = dp[i - 1][j - 1] --> no need any operation

word1[i] != word2[j] --> dp[i][j] = min(dp[i -1][j], dp[i][j - 1]) + 1 --> find the optimal value from previous choice.

Return value:

dp[m][n] means operations if word1 and word2 matches.

The time complexity is O(m * n)

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size();
        int n = word2.size();
        int dp[m + 1][n + 1] = {};
        for(int i = 1; i <= m; i++){
            dp[i][0] = i;
        }
        for(int j = 1; j <= n; j++){
            dp[0][j] = j;
        }
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++){
                if(word1[i - 1] == word2[j - 1]){
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1;
                }
            }
        }
        return dp[m][n];
    }
};

 

转载于:https://www.cnblogs.com/wdw828/p/6854760.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值