5、给定如表4-9所示的概率模型,求出序列a1a1a3a2a3a1的实值标签。
表4-9 习题5、6的概率模型
字母 | 概率 |
a1 | 0.2 |
a2 | 0.3 |
a3 | 0.5 |
解:由题可得到 P(a1)=P(X=1)=0.2,P(a2)=P(X=2)=0.3,P(a3)=P(X=3)=0.5
则:FX(1)=P(X=1)=0.2, FX(2)=P(X=1)+P(X=2)=0.5, FX(3)=P(X=1)+P(X=2)+P(X=3)=1
根据公式:
l(k)=l(k-1)+(u(k-1)-l(k-1))*Fx(Xk-1)
u(k)=l(k-1)+(u(k-1)-l(k-1))*Fx(Xk)
计算得:
a1 l(1)=l(0)+(u(0)-l(0))*Fx(0)=0+(1-0)*0=0
u(1)=l(0)+(u(0)-l(0))*Fx(1)=0+(1-0)*0.2=0.2
a1a1 l(2)=l(1)+(u(1)-l(1))*Fx(0)=0+(0.2-0)*0=0
u(2)=l(1)+(u(1)-l(1))*Fx(1)=0+(0.2-0)*0.2=0.04
a1a1a3 l(3)=l(2)+(u(2)-l(2))*Fx(2)=0+(0.04-0)*0.5=0.02
u(3)=l(2)+(u(2)-l(2))*Fx(3)=0+(0.04-0)*1 =0.04
a1a1a3a2 l(4)=l(3)+(u(3)-l(3))*Fx(1)=0.02+(0.04-0.02)*0.2=0.024
u(4)=l(3)+(u(3)-l(3))*Fx(2)=0.02+(0.04-0.02)*0.5 =0.03
a1a1a3a2a3 l(5)=l(4)+(u(4)-l(4))*Fx(2)=0.024+(0.03-0.024)*0.5=0.027
u(5)=l(4)+(u(4)-l(4))*Fx(3)=0.024+(0.03-0.024)*1=0.03
a1a1a3a2a3a1 l(6)=l(5)+(u(5)-l(5))*Fx(0)=0.027+(0.03-0.027)*0=0.027
u(6)=l(5)+(u(5)-l(5))*Fx(1)=0.027+(0.03-0.027)*0.2=0.0276
因此,该序列的实值标签为:
Tx(113231)= ( u(6) + l(6) )/2
=(0.0276+0.027)/2
=0.0273
6、对于表4-9给出的概率模型,对于一个标签为0.63215699的长度为10的序列进行解码。
解:映射关系a1=>1,a2=>2,a3=>3
Fx(k)=0, k≤0, Fx(1)=0.2, Fx(2)=0.5, Fx(3)=1, k>3.
下界: l(0)=0,上界:u(0)=1
l(k)= l(k-1)+(u(k-1)- l(k-1))Fx(xk-1)
u(k)=l(k-1)+(u(k-1)-l(k-1)) Fx(xk)
l(1)= l(0)+(u(0)- l(0))Fx(xk-1)
u(1)=l(0)+(u(0)-l(0)) Fx(xk)
如果当x1=1,则该区间为[0,0.2)、x1=2,则该区间为[0.2,0.5)、x1=3,则该区间为[0.5,1)
0.63215699在该区间[0.5,1)内 所以 第一个序列为 a3
l(2)= l(1)+(u(1)- l(1))Fx(xk-1)
u(2)=l(1)+(u(1)-l(1)) Fx(xk)
如果当x2=1,则该区间为[0.5,0.6)、x2=2,则该区间为[0.6,0.75)、x2=3,则该区间为[0.75,1)
0.63215699在该区间[0.6,0.75)内 所以 第二个序列为 a2
以此类推
当x3=2时,区间为[0.63,0.675) 0.63215699在该区间内
当x4=1时,区间为[0.63,0.639) 0.63215699在该区间内
当x5=2时,区间为[0.6318,0.6345) 0.63215699在该区间内
当x6=1时,区间为[0.6318,0.63234) 0.63215699在该区间内
当x7=3时,区间为[0.63207,0.63234) 0.63215699在该区间内
当x8=2时,区间为[0.632124,0.632205) 0.63215699在该区间内
当x9=2时,区间为[0.6321402,0.6321645) 0.63215699在该区间内
当x10=3时,区间为[0.63215235,0.6321645) 0.63215699在该区间内
所以 标签为0.63215699的长度为10的序列a3a2a2a1a2a1a3a2a2a3