PAT 甲级 1003Emergency(Dijkstra最短路)

本文探讨了作为城市应急救援队领导时,如何利用特殊地图上的城市分布、连接道路及其长度,迅速响应紧急求助并最大化召集救援资源的策略。通过输入案例分析,展示了解决此类问题的算法实现,包括寻找从特定城市到另一特定城市的最短路径数量,以及在此过程中可能收集的最大救援资源量。

1003. Emergency (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<= 500) - the number of cities (and the cities are numbered from 0 to N-1), M - the number of roads, C1 and C2 - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.

Output

For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather.
All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
Sample Output

2 4


题目的意思要求求出最短路的个数,和点的权值最大的值

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <queue>

using namespace std;
const int maxn=1e9;
struct Nod
{
  int value;
  int next;
  int weight;
}edge[505*2];
int head[505];
int tot;
void add(int x,int y,int z)
{
  edge[tot].value=y;
  edge[tot].weight=z;
  edge[tot].next=head[x];
  head[x]=tot++;
}
int vis[505];
int d[505];
int num[505];
int res[505];
int w[505];
int n,c1,c2,m;
struct Node
{
  int pos;
  int dis;
  Node(){};
  Node(int pos,int dis)
  {
    this->pos=pos;
    this->dis=dis;
  }
  friend bool operator <(Node a,Node b)
  {
    return a.dis>b.dis;
  }
};
void Dijkstra(int st)
{
  priority_queue<Node> q;
  q.push(Node(st,0));
  memset(vis,0,sizeof(vis));
  memset(num,0,sizeof(num));
  memset(res,0,sizeof(res));
  for(int i=0;i<=500;i++)
    d[i]=1e9;
  d[st]=0;num[st]=1;res[st]=w[st];
  while(!q.empty())
  {
    Node term=q.top();
    q.pop();
    if(vis[term.pos])
      continue;
    vis[term.pos]=1;
    for(int i=head[term.pos];i!=-1;i=edge[i].next)
    {
      int y=edge[i].value;
      if(d[y]>term.dis+edge[i].weight)
      {
        num[y]+=num[term.pos];
        res[y]=res[term.pos]+w[y];
        d[y]=term.dis+edge[i].weight;
        q.push(Node(edge[i].value,d[y]));
      }
      else if(d[y]==term.dis+edge[i].weight)
      {
                num[y]+=num[term.pos];
        res[y]=max(res[y],res[term.pos]+w[y]);
      }
    }
  }
}

int main()
{
  scanf("%d%d%d%d",&n,&m,&c1,&c2);
  for(int i=0;i<n;i++)
    scanf("%d",&w[i]);
  int x,y,z;
  memset(head,-1,sizeof(head));
  tot=0;
  for(int i=1;i<=m;i++)
  {
    scanf("%d%d%d",&x,&y,&z);
    add(x,y,z);
    add(y,x,z);
  }
  Dijkstra(c1);
  printf("%d %d\n",num[c2],res[c2]);
  return 0;
}


转载于:https://www.cnblogs.com/dacc123/p/8228626.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值