QM1_Time value of Money

本文介绍了金融数学中的关键概念,包括无风险收益率、名义利率、实际利率等,并解释了有效年利率的计算方法及其与名义利率的区别。同时,文章还讨论了现值与终值的转换方法及年金和永续年金的概念。

总体框架

 

 

Time Value

 

 Interest Rate

 

 

rf: 无风险收益率 (CFA中一般认为是美国短期国债T-bill的收益率)

Nominal risk-free rate: 名义无风险税率

Real risk-free rate: 实际无风险利率

Liquidity premium: 流动性风险溢价

Maturity premium: 到期风险溢价

 Risk premium: 风险溢价

费雪效应

 Nominal interest rate和Stated Interest rate是一个概念

 

Effective annual rate(EAR)

For discrete compounding

  • Where: m is the compounding frequency
    • r is the noinal/quoted/stated annual interest rate
    • r/m is periodic interest rate

For continuous compounding

  • 时时刻刻分分秒秒在计息.
  • 例: 算名义年利率是8%, 求连续计算情形下的EAR.
    • 计算器按法: 0.08 --> 2ND --> LN ==>结果: 1.083287

Conversion of PV/FV

Present Value (PV)

  • The value of an initial investment.

Future Value (FV)

  • The value of an initial investment would be worth n period from today.

Conversion of PV/FV:

  • compounding:  
    •  

       

  • continuous compounding:
    •  

       

  • 站在今天去推测未来会价值几何: PV --> FV : 复利
  • 站在未来推测今天需要存入多少: FV --> PV :折现

Annuity

Ordinary annuity

  • all constant cash flows occuring at the end of each period(END), 后付年金

Annuity due

  • all constant cash flows occuring at the beginning of each period(BEG), 先付年金
  •  

Prepetuity

  • a set of constant never-ending sequential cash flows occuring at the end of each period, 永续年金
    • PV = A/R
      • where A: the periodic payment
      • r: the periodic return

 

 

 推荐用第三种方式, 就不用再把计算器在END和BGN模式之间去转换.

 

转载于:https://www.cnblogs.com/cheese320/p/9007531.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值