P2486 [SDOI2011]染色 区间合并+树链剖分(加深对线段树的理解)

本文介绍了一种结合树状数组与线段树的数据结构优化方法,用于解决复杂查询与更新操作的问题。通过使用树状数组进行区间加法与查询,配合线段树的区间更新与查询能力,实现高效的数据处理。文章详细阐述了数据结构的设计思路,包括节点结构定义、初始化过程、更新与查询操作等,并提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 const  int M=3e5+5;
  4 struct node{
  5     int l,r,cnt,lazy;
  6     node(int l1=0,int r1=0,int cnt1=0,int lazy1=0):l(l1),r(r1),cnt(cnt1),lazy(lazy1){}
  7 }tree[M<<2];
  8 int fa[M],sz[M],deep[M],dfn[M],son[M],to[M],a[M],top[M],cnt,n;
  9 char s[2];
 10 vector<int>g[M];
 11 void dfs1(int u,int from){
 12     fa[u]=from;
 13     sz[u]=1;
 14     deep[u]=deep[from]+1;
 15     for(int i=0;i<g[u].size();i++){
 16 
 17         int v=g[u][i];
 18         if(v!=from){
 19             dfs1(v,u);
 20             sz[u]+=sz[v];
 21             if(sz[v]>sz[son[u]])
 22                 son[u]=v;
 23         }
 24         
 25     }
 26 }
 27 void dfs2(int u,int t){
 28     top[u]=t;
 29     dfn[u]=++cnt;
 30     to[cnt]=u;
 31     if(!son[u])
 32         return ;
 33     dfs2(son[u],t);
 34     for(int i=0;i<g[u].size();i++){
 35         int v=g[u][i];
 36         if(v!=fa[u]&&v!=son[u])
 37             dfs2(v,v);
 38     }
 39 }
 40 void up(int root){
 41     tree[root].cnt=tree[root<<1].cnt+tree[root<<1|1].cnt;
 42     if(tree[root<<1].r==tree[root<<1|1].l)
 43         tree[root].cnt--;
 44     tree[root].l=tree[root<<1].l;
 45     tree[root].r=tree[root<<1|1].r;
 46 }
 47 void build(int root,int l,int r){
 48     tree[root].lazy=0;
 49     if(l==r){
 50         tree[root].l=tree[root].r=a[to[l]];
 51         tree[root].cnt=1;
 52         return ;
 53     }
 54     int midd=(l+r)>>1;
 55     build(root<<1,l,midd);
 56     build(root<<1|1,midd+1,r);
 57     up(root);
 58 }
 59 void pushdown(int root){
 60     tree[root<<1]=tree[root<<1|1]=node(tree[root].l,tree[root].r,1,tree[root].lazy);
 61     tree[root].lazy=0;
 62 }
 63 void update(int L,int R,int x,int root,int l,int r){
 64     if(L<=l&&r<=R){
 65         tree[root]=node(x,x,1,x);
 66         return ;
 67     }
 68     if(tree[root].lazy)
 69         pushdown(root);
 70     int midd=(l+r)>>1;
 71     if(L<=midd)
 72         update(L,R,x,root<<1,l,midd);
 73     if(R>midd)
 74         update(L,R,x,root<<1|1,midd+1,r);
 75     up(root);
 76 }
 77 void add(int u,int v ,int w){
 78     int fu=top[u],fv=top[v];
 79     while(fu!=fv){
 80         if(deep[fu]>=deep[fv])
 81             update(dfn[fu],dfn[u],w,1,1,n),u=fa[fu],fu=top[u];
 82         else
 83             update(dfn[fv],dfn[v],w,1,1,n),v=fa[fv],fv=top[v];
 84     }
 85     if(dfn[u]<=dfn[v])
 86         update(dfn[u],dfn[v],w,1,1,n);
 87     else
 88         update(dfn[v],dfn[u],w,1,1,n);
 89 }
 90 node meger(node a,node b){
 91     if(!a.cnt)
 92         return b;
 93     if(!b.cnt)
 94         return a;
 95     node ans=node(0,0,0,0);
 96     ans.cnt=a.cnt+b.cnt;
 97     if(a.r==b.l)
 98         ans.cnt--;
 99     ans.l=a.l;
100     ans.r=b.r;
101     return ans;
102 }
103 node query(int L,int R,int root,int l,int r){
104     if(L<=l&&r<=R){
105         return tree[root];
106     }
107     if(tree[root].lazy)
108         pushdown(root);
109     int midd=(l+r)>>1;
110     node ans;
111     if(L<=midd)
112         ans=query(L,R,root<<1,l,midd);
113     if(R>midd)
114         ans=meger(ans,query(L,R,root<<1|1,midd+1,r));
115     up(root);
116     return ans;
117 }
118 int solve(int u,int v){
119     node l,r;
120     int fv=top[v],fu=top[u];
121     while(fv!=fu){
122         if(deep[fu]>=deep[fv])
123             l=meger(query(dfn[fu],dfn[u],1,1,n),l),u=fa[fu],fu=top[u];
124         else
125             r=meger(query(dfn[fv],dfn[v],1,1,n),r),v=fa[fv],fv=top[v];
126     }
127     if(dfn[u]<=dfn[v])
128         r=meger(query(dfn[u],dfn[v],1,1,n),r);
129     else
130         l=meger(query(dfn[v],dfn[u],1,1,n),l);
131     swap(l.l,l.r);
132     l=meger(l,r);
133     return l.cnt;
134 }
135 int main(){
136     int m;
137     scanf("%d%d",&n,&m);
138     for(int i=1;i<=n;i++)
139         scanf("%d",&a[i]);
140     for(int i=1;i<n;i++){
141         int u,v;
142         scanf("%d%d",&u,&v);
143         g[u].push_back(v);
144         g[v].push_back(u);
145     }//cout<<"!!"<<endl;
146     dfs1(1,1);
147     dfs2(1,1);
148     
149     build(1,1,n);
150     while(m--){
151         int u,v,w;
152         scanf("%s",s);
153         if(s[0]=='Q'){
154             scanf("%d%d",&u,&v);
155             printf("%d\n",solve(u,v));
156         }
157         else{
158             scanf("%d%d%d",&u,&v,&w);
159             add(u,v,w);
160         }
161     }
162     return 0;
163 }
View Code

 

转载于:https://www.cnblogs.com/starve/p/10840183.html

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
<think>我们使用树链剖分(重链剖分)将树分割成链,然后利用DFS序(实际上是剖分后的DFS序)将树结构转化为线性序列,然后使用线段树维护序列上的权值。这样,子树查询就转化为区间查询,节点更新就转化为单点更新。 树链剖分的DFS序:在剖分DFS中,我们优先遍历重儿子,这样保证重链上的节点在DFS序中是连续的。同时,每个子树在DFS序中也是连续的(因为DFS遍历子树时是连续的)。因此,子树查询可以转化为区间查询。 步骤: 1. 第一次DFS:计算每个节点的父节点、深度、重儿子、子树大小。 2. 第二次DFS:确定DFS序(时间戳),同时记录每个节点所在链的顶端节点(用于路径查询,但本题只需要子树查询,所以这一步可以简化,但我们还是按标准剖分来做)。 3. 建立线段树:在DFS序上建立线段树,支持单点更新和区间求和。 子树查询:对于节点u,其子树对应的区间为[in[u], out[u]](即DFS进入和退出的时间戳)。注意:在树链剖分中,由于优先遍历重儿子,子树节点在DFS序中仍然是连续的。 因此,我们可以使用线段树来维护这个区间和。 伪代码(Python风格)如下: ```python import sys sys.setrecursionlimit(200000) class SegmentTree: def __init__(self, data): self.n = len(data) self.size = 1 while self.size < self.n: self.size *= 2 self.tree = [0] * (2 * self.size) # 构建线段树,初始数据 for i in range(self.n): self.tree[self.size + i] = data[i] for i in range(self.size - 1, 0, -1): self.tree[i] = self.tree[2*i] + self.tree[2*i+1] def update(self, index, value): # 单点更新:将位置index的值改为value(注意:这里是直接赋值,如果是增加则需要调整) # 但通常我们支持增加一个差值,这里按需求,我们假设是更新为新的值,所以需要知道旧值?或者我们设计为增加一个增量? # 根据问题,节点改变权值,我们可以用增量更新。但为了通用,这里我们实现为单点设置值,但需要知道原值?或者我们设计为传入增量(更符合动态更新)。 # 这里我们实现为增量更新(delta) # index: 原始数组中的位置(0-indexed) pos = index + self.size self.tree[pos] += value # 增加一个增量 while pos > 1: pos //= 2 self.tree[pos] = self.tree[2*pos] + self.tree[2*pos+1] def query(self, l, r): # 区间查询 [l, r] (闭区间) l += self.size r += self.size res = 0 while l <= r: if l % 2 == 1: res += self.tree[l] l += 1 if r % 2 == 0: res += self.tree[r] r -= 1 l //= 2 r //= 2 return res # 树链剖分部分 n = 100000 graph = [[] for _ in range(n+1)] # 第一次DFS:计算父节点、深度、子树大小、重儿子 parent = [0] * (n+1) depth = [0] * (n+1) size = [0] * (n+1) heavy = [-1] * (n+1) # 重儿子,初始化为-1 def dfs1(u, p, d): parent[u] = p depth[u] = d size[u] = 1 max_size = 0 for v in graph[u]: if v == p: continue dfs1(v, u, d+1) size[u] += size[v] if size[v] > max_size: max_size = size[v] heavy[u] = v # 第二次DFS:确定DFS序(时间戳)和重链的顶端 head = [0] * (n+1) # 链的顶端节点 pos = [-1] * (n+1) # 节点在DFS序中的位置(时间戳) cur_time = 0 def dfs2(u, h): global cur_time head[u] = h pos[u] = cur_time cur_time += 1 # 如果有重儿子,先遍历重儿子 if heavy[u] != -1: dfs2(heavy[u], h) for v in graph[u]: if v == parent[u] or v == heavy[u]: continue dfs2(v, v) # 轻儿子,自己作为新链的顶端 # 初始化 def init_tree(root): dfs1(root, 0, 0) dfs2(root, root) # 初始化一个长度为n(节点数)的数组,初始权值,假设为0,或者根据实际输入 arr = [0] * n # 注意:节点从1开始,时间戳从0到n-1 seg_tree = SegmentTree(arr) return seg_tree, pos, head # 返回线段树和位置数组 # 更新节点u的权值(增加delta) def update_node(seg_tree, u, delta): idx = pos[u] # 节点u在线段树中的位置 seg_tree.update(idx, delta) # 查询子树u的权值和:子树u对应的区间为 [pos[u], pos[u]+size[u]-1] ?注意:在树链剖分的DFS序中,子树u的节点在区间[pos[u], pos[u]+size[u]-1]内吗? # 实际上,在第二次DFS中,我们优先遍历重儿子,然后轻儿子。子树u的DFS序区间是连续的,因为递归完子树后才会遍历下一个子树。所以子树u的区间为 [pos[u], pos[u] + size[u] - 1]。 def query_subtree(seg_tree, u): l = pos[u] r = pos[u] + size[u] - 1 return seg_tree.query(l, r) # 注意:这里线段树的区间是[0, n-1],所以直接使用pos[u]和pos[u]+size[u]-1即可。 ``` ### 注意点: - 树链剖分的DFS序保证了每个子树是连续的,所以我们可以用区间[pos[u], pos[u]+size[u]-1]表示子树。 - 线段树支持区间求和和单点更新(增量更新)。如果节点权值改变为新的值,则需要计算增量(新值-旧值)然后更新。 ### 时间复杂度: - 预处理:两次DFS,O(n) - 更新:O(log n) - 查询:O(log n) ### 与树状数组+DFS序的对比: - 树状数组+DFS序(普通DFS序)同样可以做到,且树状数组常数更小,代码更简单。 - 树链剖分的主要优势在于可以同时支持路径查询(而不仅仅是子树查询)。如果问题需要查询路径上的权值和,树链剖分就更有优势。 ### 总结: 对于子树查询,树状数组+普通DFS序已经足够高效。树链剖分+线段树也可以实现,但代码稍复杂,但扩展性强(支持路径查询)。本题要求子树查询,两种方法均可,但树链剖分在这里有点“大材小用”。 §§相关问题§§ 1. 树链剖分中重链和轻链的作用是什么?为什么优先遍历重儿子? 2. 除了子树查询,树链剖分还能支持哪些类型的查询和操作? 3. 如果树的结构是动态变化的(如添加或删除边),如何维护树链剖分? 4. 线段树和树状数组在实现子树查询时各自的优缺点是什么?</think>对于树结构不变、节点数不超过 100,000 的场景,使用 **线段树 + 树链剖分** 是高效支持子树权值查询和节点权值更新的解决方案。树链剖分将树结构转化为线性序列,线段树则提供高效的区间查询和单点更新能力。 ### 解决方案步骤: 1. **树链剖分预处理**: - **第一次 DFS**:计算每个节点的父节点、深度、子树大小(`size[u]`)和重儿子(子树最大的子节点) - **第二次 DFS**:生成 DFS 序(优先遍历重儿子),记录节点入序时间戳 `dfn[u]` 和子树结束时间 `end[u]`(子树节点在 DFS 序中连续) 2. **线段树构建**: - 基于 DFS 序构建线段树,叶子节点存储原始节点权值 - 支持单点更新(节点权值修改)和区间查询(子树权值和) ### 代码实现(Python 风格) ```python import sys sys.setrecursionlimit(200000) class SegmentTree: def __init__(self, n): self.n = n self.size = 1 while self.size < n: self.size *= 2 self.tree = [0] * (2 * self.size) def update(self, index, delta): """单点更新:位置 index 增加 delta""" i = index + self.size self.tree[i] += delta while i > 1: i //= 2 self.tree[i] = self.tree[2*i] + self.tree[2*i+1] def query(self, l, r): """区间查询 [l, r] 的和""" l += self.size r += self.size res = 0 while l <= r: if l % 2 == 1: res += self.tree[l] l += 1 if r % 2 == 0: res += self.tree[r] r -= 1 l //= 2 r //= 2 return res # 树链剖分预处理 n = 100000 # 最大节点数 graph = [[] for _ in range(n+1)] parent = [0] * (n+1) # 父节点 depth = [0] * (n+1) # 深度 size = [0] * (n+1) # 子树大小 heavy = [-1] * (n+1) # 重儿子 dfn = [0] * (n+1) # DFS 入序时间戳 end = [0] * (n+1) # 子树结束时间戳 cur_time = 0 def dfs1(u, p, d): """第一次 DFS:计算 size/heavy""" parent[u] = p depth[u] = d size[u] = 1 max_size = 0 for v in graph[u]: if v == p: continue dfs1(v, u, d+1) size[u] += size[v] if size[v] > max_size: max_size = size[v] heavy[u] = v def dfs2(u, head): """第二次 DFS:生成 DFS 序""" global cur_time dfn[u] = cur_time cur_time += 1 # 优先遍历重儿子 if heavy[u] != -1: dfs2(heavy[u], head) # 重儿子继承当前链头 for v in graph[u]: if v == parent[u] or v == heavy[u]: continue dfs2(v, v) # 轻儿子作为新链头 end[u] = cur_time - 1 # 子树结束时间 # 初始化树链剖分 def init_tree(root=1): dfs1(root, 0, 0) dfs2(root, root) # 根节点作为第一条链的链头 return SegmentTree(cur_time) # 创建线段树 # 更新节点 u 的权值 (新值 new_val) def update_node(seg_tree, u, new_val, old_val): delta = new_val - old_val seg_tree.update(dfn[u], delta) # 查询子树 u 的权值和 def query_subtree(seg_tree, u): return seg_tree.query(dfn[u], end[u]) # 使用示例 if __name__ == "__main__": # 假设树已构建在 graph 中,root=1 seg_tree = init_tree() # 初始化节点权值 (假设存储在 node_val 数组) for u in range(1, n+1): seg_tree.update(dfn[u], node_val[u]) # 示例:更新节点 5 权值为 10 (旧值假设为 7) update_node(seg_tree, 5, 10, 7) # 示例:查询子树 3 的权值和 print(query_subtree(seg_tree, 3)) ``` ### 时间复杂度分析 | 操作 | 时间复杂度 | 说明 | |--------------|------------|--------------------------| | 树链剖分预处理 | O(n) | 两次 DFS 遍历 | | 单点权值更新 | O(log n) | 线段树单点更新 | | 子树权值查询 | O(log n) | 线段树区间查询 | ### 优势与适用场景 1. **树链剖分优势**: - 将子树查询转化为 **连续区间查询**(`[dfn[u], end[u]]`) - DFS 序连续性由重链优先遍历保证 2. **线段树优势**: - O(log n) 高效区间求和 - 支持动态点更新 3. **扩展性**: - 可扩展支持路径查询(通过跳链查询) - 可支持其他聚合操作(最大值、最小值等) 此方案在节点数 100,000 时完全可行,预处理 O(n),每次操作 O(log n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值