[LeetCode] 198. House Robber _Easy tag: Dynamic Programming

打家劫舍问题的DP解决方案
本文介绍了一个经典的动态规划问题——打家劫舍,给出三种不同的DP实现方案,包括使用pre/sec变量、O(n)空间复杂度的传统DP方法及优化后的滚动数组方法,并附带测试案例。

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
             Total amount you can rob = 1 + 3 = 4.

Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
             Total amount you can rob = 2 + 9 + 1 = 12.

这个题目的思路就是用DP(Dynamic programming), 就是我们要找到A[i] 跟它前面几个元素的关系, 这个题目我用三种方法, 第一种是用pre, sec, 第二种是用O(n) Space, 第三种用template的

滚动数组来解决类似的DP题目, 很牛逼.


1. Constraints
1) can be empty
2)element is non-negative
3) edge case, when length < 3

2. ideas

DP T: O(n) S: O(1) optimal

1) edge case: l < 3: max([0] + nums)
2) A[i] = max(A[i-2] + nums[i], A[i-1])

利用滚动数组的时候, 因为当前状态跟之前两个状态有关, 所以模3, % 3 即可将S: O(n) decrease into O(1)

3. Codes

1) use pre, sec
1 class Solution:
2     def houseRopper(self, nums):
3         l = len(nums)
4         if l < 3: return max([0] + nums)
5         pre, sec = nums[0], max(nums[:2])
6         for i in range(2, l):
7             ans = max(pre + nums[i], sec)
8             pre, sec = sec, ans
9         return sec

 

2) Template of DP      T: O(n)    S: O(n)

1 class Solution:
2     def houseRopper(self, nums):
3         n = len(nums)
4         if n < 3: return max([0] + nums)
5         f = [0]*n6         f[0], f[1] = nums[0], max(nums[:2])
7         for i in range(2, n):
8             f[i] = max(f[i-2] + nums[i], f[i-1])
9         return f[n - 1]

 

3) DP  滚动数组      T: O(n)    S: O(1)

1 class Solution:
2      def houseRopper(self, nums):
3          n = len(nums)
4          if n < 3: return max([0] + nums)
5          f = [0]*3
6          f[0], f[1] = nums[0], max(nums[:2])
7          for i in range(2, n):
8              f[i % 3] = max(f[(i - 2)% 3] + nums[i], f[(i - 1) % 3])
9          return f[(n - 1) % 3]

 

4. Test cases

1)  edge cases

2) 

[2,7,9,3,1]


转载于:https://www.cnblogs.com/Johnsonxiong/p/9321329.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值