Balloons dfs

本文介绍了一种用于识别由大量气球组成的图案的算法。该算法通过两种不同的连接定义来计算气球形成的连通区域数量,一种是考虑八方向连接,另一种是更宽松的四方向连接标准。通过对矩阵进行深度优先搜索,可以有效地找到并计数这些连通区域。
 
 
  Both Saya and Kudo like balloons. One day, they heard that in the central park, there will be thousands of people fly balloons to pattern a big image.

They were very interested about this event, and also curious about the image.

Since there are too many balloons, it is very hard for them to compute anything they need. Can you help them?

You can assume that the image is an N*N matrix, while each element can be either balloons or blank.

Suppose element and element B are both balloons. They are connected if:

i) They are adjacent;
       ii) There is a list of element C1C2, … , Cn, while A and C1 are connected, C1 and C2are connected …Cn and B are connected.

And a connected block means that every pair of elements in the block is connected, while any element in the block is not connected with any element out of the block.

To Saya, element A(xa,ya)and B(xb,yb) is adjacent if |xa-xb| + |ya-yb|  1 
       But to Kudo, element A(xa,ya) and element B (xb,yb) is adjacent if |xa-xb|≤1 and |ya-yb|≤1
       They want to know that there’s how many connected blocks with there own definition of adjacent?

输入

The input consists of several test cases.
The first line of input in each test case contains one integer N (0<N100), which represents the size of the matrix.
Each of the next N lines contains a string whose length is N, represents the elements of the matrix. The string only consists of 0 and 1, while 0 represents a block and 1represents balloons.
The last case is followed by a line containing one zero.

输出

 For each case, print the case number (1, 2 …) and the connected block’s numbers with Saya and Kudo’s definition. Your output format should imitate the sample output. Print a blank line after each test case.

示例输入

5
11001
00100
11111
11010
10010

0

示例输出

Case 1: 3 2
 1 #include<stdio.h>
 2  #include<string.h>
 3  int map[110][110],vis[110][110];
 4  void dfs1(int x,int y)
 5  {
 6      if(map[x][y] == 0 || vis[x][y] == 1)
 7          return;
 8      vis[x][y] = 1;
 9      dfs1(x,y-1);
10      dfs1(x,y+1);
11      dfs1(x+1,y);
12      dfs1(x-1,y);
13  
14  }//四连块
15  void dfs2(int x,int y)
16  {
17      if(map[x][y] == 0 || vis[x][y] == 1)
18          return;
19      vis[x][y] = 1;
20      dfs2(x-1,y-1); dfs2(x-1,y);dfs2(x-1,y+1); dfs2(x,y-1);
21      dfs2(x,y+1); dfs2(x+1,y-1); dfs2(x+1,y);  dfs2(x+1,y+1);
22  }//八连块
23  int main()
24  {
25  
26      int n,cnt,sum;
27      char s[110];
28      int k =1,i,j;
29      while(~scanf("%d",&n)&&n)
30      {
31          memset(vis,0,sizeof(vis));
32          for(i = 0; i <= n+1; i++)
33          {
34              map[0][i] = 0;
35              map[i][0] = 0;
36              map[n+1][i] = 0;
37              map[i][n+1] = 0;
38          }外加一道墙
39          for(i = 1; i <= n;i++)
40          {
41              scanf("%s",s);
42              for(j = 0; j < n; j++)
43              {
44                  map[i][j+1] = s[j] - '0';
45              }
46          }
47          cnt = 0,sum = 0;
48          for(i = 1; i <= n; i++)
49              for(j = 1; j <= n; j++)
50                  if(!vis[i][j] && map[i][j])
51                  {
52                      cnt++;
53                      dfs1(i,j);
54                  }
55          memset(vis,0,sizeof(vis));
56          for(i = 1; i <= n; i++)
57              for(j = 1; j <= n; j++)
58                  if(!vis[i][j] && map[i][j])
59                  {
60                      sum++;
61                      dfs2(i,j);
62  
63                  }
64         printf("Case %d: %d %d\n\n",k++,cnt,sum);
65      }
66      return 0;
67  
68  }
69  

 

转载于:https://www.cnblogs.com/LK1994/archive/2013/05/18/3085566.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值