【bzoj3518】点组计数 欧拉函数(欧拉反演)

本文探讨了一个关于平面上n*m点阵中三点共线的问题,给出了详细的数学推导过程及解决方案,利用欧拉函数和快速筛选技巧实现了高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

平面上摆放着一个n*m的点阵(下图所示是一个3*4的点阵)。Curimit想知道有多少三点组(a,b,c)满足以a,b,c三点共线。这里a,b,c是不同的3个点,其顺序无关紧要。(即(a,b,c)和
(b,c,a)被认为是相同的)。由于答案很大,故你只需要输出答案对1,000,000,007的余数就可以了。

输入

有且仅有一行,两个用空格隔开的整数n和m。

输出

有且仅有一行,一个整数,表示三点组的数目对1,000,000,007的余数。(1,000。000。007是质数)

样例输入

3 4

样例输出

2 0


题解

欧拉函数(欧拉反演)

先单独考虑横着的和竖着的,答案分别为 $m·C_n^3$ 和 $n·C_m^3$ 。

然后考虑斜着的:设第一个点和第三个点横坐标差为 $i$ ,纵坐标差为 $j$ ,那么它们中间就有 $\gcd(i,j)-1$ 个点,所以第二个点的个数就是 $\gcd(i,j)-1$ ;又因为这样的矩形有 $(n-i)(m-j)$ 个,每个矩形有2个,因此总个数就是 $2(n-i)(m-j)\gcd(i,j)$ 。

因此斜着的答案就是:

$\sum\limits_{i=1}^{n-1}\sum\limits_{j=1}^{m-1}2(n-i)(m-j)\gcd(i,j)=2\sum\limits_{d=1}^{min(n-1,m-1)}\varphi(d)\sum\limits_{i=1}^{\lfloor\frac {n-1}d\rfloor}(n-di)\sum\limits_{j=1}^{\lfloor\frac {m-1}d\rfloor}(m-dj)$

快筛 $\varphi$ ,枚举 $d$ ,后面的两个 $\sum$ 用等差数列求和公式 $O(1)$ 求出。

时间复杂度 $O(n)$ 

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50010
#define mod 1000000007
using namespace std;
typedef long long ll;
int phi[N] , prime[N] , tot , np[N];
int main()
{
	int n , m , i , j;
	ll ans;
	scanf("%d%d" , &n , &m) , ans = ((ll)n * (n - 1) * (n - 2) / 6 % mod * m + (ll)m * (m - 1) * (m - 2) / 6 % mod * n) % mod;
	if(n > m) swap(n , m);
	n -- , m -- ;
	phi[1] = 1;
	for(i = 2 ; i <= n ; i ++ )
	{
		if(!np[i]) phi[i] = i - 1 , prime[++tot] = i;
		for(j = 1 ; j <= tot && i * prime[j] <= n ; j ++ )
		{
			np[i * prime[j]] = 1;
			if(!(i % prime[j]))
			{
				phi[i * prime[j]] = phi[i] * prime[j];
				break;
			}
			else phi[i * prime[j]] = phi[i] * phi[prime[j]];
		}
	}
	for(i = 1 ; i <= n ; i ++ )
		ans = (ans + (ll)(n - i + 1 + n - n / i * i + 1) * (n / i) / 2 % mod * (m - i + 1 + m - m / i * i + 1) % mod * (m / i) % mod * phi[i]) % mod;
	printf("%lld\n" , (ans - (ll)n * (n + 1) / 2 % mod * m % mod * (m + 1) % mod + mod) % mod);
	return 0;
}

 

 

转载于:https://www.cnblogs.com/GXZlegend/p/8110864.html

内容概要:本文档提供了关于“微型车间生产线的设计与生产数据采集试验研究”的毕业设计复现代码,涵盖从论文结构生成、机械结构设计、PLC控制系统设计、生产数据采集与分析系统、有限元分析、进度管理、文献管理和论文排版系统的完整实现。通过Python代码和API调用,详细展示了各个模块的功能实现和相互协作。例如,利用SolidWorks API设计机械结构,通过PLC控制系统模拟生产流程,使用数据分析工具进行生产数据的采集和异常检测,以及利用进度管理系统规划项目时间表。 适合人群:具有机械工程、自动化控制或计算机编程基础的学生或研究人员,尤其是从事智能制造领域相关工作的人员。 使用场景及目标:①帮助学生或研究人员快速搭建和理解微型车间生产线的设计与实现;②提供完整的代码框架,便于修改和扩展以适应不同的应用场景;③作为教学或科研项目的参考资料,用于学习和研究智能制造技术。 阅读建议:此资源不仅包含详细的代码实现,还涉及多个学科领域的知识,如机械设计、电气控制、数据分析等。因此,在学习过程中,建议读者结合实际操作,逐步理解每个模块的功能和原理,并尝试调整参数以观察不同设置下的系统表现。同时,可以参考提供的文献资料,深入研究相关理论和技术背景。
本次的学生体质健康信息管理网站,按照用户的角色可以分为教师与学生,后台设置管理员角色来对学生的信息进行管理。,设计如下: 1、后台管理系统 后台管理系统主要是为该系统的管理员提供信息管理服务的系统,具体包括的功能模块如下: (1)管理员信息管理 (2)教师信息管理 (3)学生信息管理 (4)健康信息统计(图形化进行健康,亚健康等学生的信息数量统计) 2、教师角色的功能模块设计 教师角色所需要的功能模块主要包括了如下的一些内容: (1)个人资料修改 (2)学生体质健康管理:录入相关数据,包括但不限于身高、体重、肺活量、视力等生理指标以及运动能力、身体成分、骨密度等健康指标,并且设置健康,亚健康状态 (3)学生健康建议:根据体质信息,进行学生健康的建议 (4)健康预警:对健康出问题的学生,进行健康预警 (5)饮食和锻炼情况管理,查看 3、学生角色 学生角色可以通过该信息网站看到个人的基本信息,能够看到教师给与学生的健康建议等,功能模块设计如下: (1)个人资料修改 (2)我的健康建议查看 (3)我的健康预警 (4)饮食和锻炼情况管理,记录平时的饮食和锻炼情况 完整前后端源码,部署后可正常运行! 环境说明 开发语言:Java后端 框架:ssm,mybatis JDK版本:JDK1.8+ 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:eclipse/idea Maven包:Maven3.3+ 部署容器:tomcat7.5+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值