POJ-1458 Common Subsequence ( DP )

本文介绍了一种解决最长公共子序列问题的算法实现。通过动态规划方法,该程序能够找出两个字符串之间的最大长度公共子序列。文章提供了完整的C++代码示例。

题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=68966#problem/L

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0

题目大意 找两个串的最大公共子串
状态转移方程 以dp[i][j]表示串1前i个字符和串2前j个字符的最大公共子串,则当str1[i]==dp[j]时有dp[i][j] = dp[i - 1][j - 1] + 1,否则dp[i][j] = max( dp[i - 1][j], dp[i][j - 1] ),此结论可用反正证明

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cmath>
 4 #include<algorithm>
 5 using namespace std;
 6 
 7 int dp[1005][1005];
 8 
 9 int main(){
10     ios::sync_with_stdio( false );
11 
12     string str1, str2;
13     while( cin >> str1 >> str2 ){
14         memset( dp, 0, sizeof( dp ) );
15 
16         for( int i = 0; i < str1.size(); i++ )
17             for( int j = 0; j < str2.size(); j++ ){
18                 if( str1[i] == str2[j] )
19                     dp[i + 1][ j + 1] = dp[i][j] + 1;
20                 else dp[i + 1][j + 1] = max( dp[i][j + 1], dp[i + 1][j] );
21             }
22 
23         cout << dp[str1.size()][str2.size()] << endl;
24     }
25 
26     return 0;
27 }

 

转载于:https://www.cnblogs.com/hollowstory/p/5448716.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值