Codeforces Edu Round 66 A-E

本文深入探讨了五种算法竞赛中的高效解决方案,包括快速取余、循环溢出预防、最短连续区间的寻找、数组最优分割及最小覆盖段的确定,提供C++代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. From Hero to Zero

通过取余快速运行第一步即可。由于\(a \% b (a >= b) <= \frac{a}{2}\)。所以总复杂度不超过\(O(log_2n)\)

#include <cstdio>
#include <iostream>
using namespace std;
typedef long long LL;
int main(){
    int T; scanf("%d", &T);
    while(T--){
        LL n, k, ans = 0;
        scanf("%lld%lld", &n, &k);
        while(n){
            if(n % k) ans += n % k, n -= n % k;
            if(n)n /= k, ans++; 
        }
        printf("%lld\n", ans);
    }
    return 0;
}
B. Catch Overflow!

循环本质其实是栈的思想,可以用\(loop\)表示这层要循环多少次。注意如果直接乘可能爆\(long\ long\)

其实当\(loop > 2 ^ {32} - 1\),后面的只要有\(add\)都不行了,所以只要用个\(flag\)记录就行了...

#include <cstdio>
#include <iostream>
#include <string>
#include <stack> 
using namespace std;
typedef long long LL;
const LL INF = (1ll << 32) - 1; 
LL n = 0, loop = 1;
stack<int> s;
string ch;
int x, flag = 0;
int main(){
    ios::sync_with_stdio(false);
    int T; cin >> T;
    while(T--){
        cin >> ch;
        if(ch == "add"){ 
            if(loop > INF){
                cout << "OVERFLOW!!!" << endl;
                return 0;
            }
            n += loop;
        }else if(ch == "for"){
            cin >> x;
            if(loop > INF) {
                flag++;
                continue;
            }
            s.push(x);
            loop *= x;
        }else if(ch == "end"){
            if(flag) {
                flag --;
                continue;
            }
            loop /= s.top();
            s.pop(); 
        }
        if(n > INF){
            cout << "OVERFLOW!!!" << endl;
            return 0;
        }
    }
    cout << n << endl;
    return 0;
}
C. Electrification

注意数据是单调递增的,所以容易想到最短的一段必然是连续的,因为通过绝对值变成正的值顺序一定是\(1, 2, 3....n\),所以每次变成正的后,它可能是最小的,也有可能大于后面的一些,因为减的多了,所以整个区间会往后移动。我们可以尝试枚举每一个\([i, i + k]\)的这个区间,发现能使最小的即变为\((a[i + k] - a[i]) / 2\),也就是全部都减\((a[i + k] - a[i]) / 2\)(可以向下取整)。可以用小根堆维护最小值。由于精度问题,第一个可以不用\(/2\)

#include <cstdio>
#include <iostream>
#include <cmath> 
#include <queue>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 200010;
int n, k, a[N];
priority_queue<PII, vector<PII>, greater<PII> > q;
int main(){
    int T; scanf("%d", &T);
    while(T--){
        while(q.size()) q.pop();
        scanf("%d%d", &n, &k);
        for(int i = 1; i <= n; i++)
            scanf("%d", a + i); 
        for(int i = 1; i + k <= n; i++)
            q.push(make_pair(a[i + k] - a[i], (a[i] + a[i + k]) / 2));
        printf("%d\n", q.top().second);
    }
    return 0;
}
D. Array Splitting

非常巧妙的做法,观察到让我们求的值其实是每一段的和$ * $ 相应的段数,但其实可以发现,一个\(ans\)的组成为:

\(1 * A + 2 * B + 3 * C = (A + B + C) + (B + C) + C\)。实质上就是找到\(k\)个后缀和,将他们加起来求最大值。这样直接贪心求解即可,记得\([1, n]\)这个区间必须选。

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 300010;
typedef long long LL;
int n, k, a[N];
LL ans, sum[N];
int main(){
    scanf("%d%d", &n, &k);
    for(int i = 1; i <= n; i++) 
        scanf("%d", a + i);
    for(int i = n; i; i--)
        sum[i] = sum[i + 1] + a[i];
    sort(sum + 2, sum + 1 + n);
    ans = sum[1];
    for(int i = n; i >= n - k + 2; i--) ans += sum[i];
    printf("%lld\n", ans);
    return 0;
}
E. Minimal Segment Cover

注意到\(l\)\(r\)的范围并不大,我们可以预处理出从\(l\)出发最远能到哪里(一条线段),注意\(l\)也可以是中间点。这样我们只需要逐个枚举即可。时间复杂度\(SIZE ^ 2\),可以用倍增的形式优化。具体方式很像\(LCA\),预处理每个\(l\)\(2 ^ p(0 <= p <= \lfloor log_2500000 \rfloor)\)能到哪里即可。本质上就是枚举答案的二进制位即可。

时间复杂度\(O(slog_2s)\)\(s\)是数字范围)

注意预处理顺序,要么\(i\)倒序枚举,要么\(j\)在第一个条件,否则没有正确的转移。

#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
const int N = 200010, SIZE = 500010, L = 19;
int n, m, maxS = -1, f[SIZE][L];
int main(){
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++){
        int l, r; scanf("%d%d", &l, &r);
        f[l][0] = max(f[l][0], r);
        maxS = max(maxS, r);
    }
    for(int i = 1; i <= maxS; i++)
        f[i][0] = max(f[i][0], f[i - 1][0]);
    
    for(int j = 1; j < L; j++)
        for(int i = 0; i <= maxS; i++)
            f[i][j] = f[f[i][j - 1]][j - 1];
    
    for(int i = 1; i <= m; i++){
        int x, y, ans = 0;  scanf("%d%d", &x, &y);
        for(int i = L - 1; ~i; i--)
            if(f[x][i] < y) x = f[x][i], ans |= 1 << i;
        if(f[x][0] >= y) printf("%d\n", ans + 1);
        else puts("-1");
    }
    return 0;
}

转载于:https://www.cnblogs.com/dmoransky/p/11330238.html

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在机器人技术中,轨迹规划是实现机器人从一个位置平稳高效移动到另一个位置的核心环节。本资源提供了一套基于 MATLAB 的机器人轨迹规划程序,涵盖了关节空间和笛卡尔空间两种规划方式。MATLAB 是一种强大的数值计算与可视化工具,凭借其灵活易用的特点,常被用于机器人控制算法的开发与仿真。 关节空间轨迹规划主要关注机器人各关节角度的变化,生成从初始配置到目标配置的连续路径。其关键知识点包括: 关节变量:指机器人各关节的旋转角度或伸缩长度。 运动学逆解:通过数学方法从末端执行器的目标位置反推关节变量。 路径平滑:确保关节变量轨迹连续且无抖动,常用方法有 S 型曲线拟合、多项式插值等。 速度和加速度限制:考虑关节的实际物理限制,确保轨迹在允许的动态范围内。 碰撞避免:在规划过程中避免关节与其他物体发生碰撞。 笛卡尔空间轨迹规划直接处理机器人末端执行器在工作空间中的位置和姿态变化,涉及以下内容: 工作空间:机器人可到达的所有三维空间点的集合。 路径规划:在工作空间中找到一条从起点到终点的无碰撞路径。 障碍物表示:采用二维或三维网格、Voronoi 图、Octree 等数据结构表示工作空间中的障碍物。 轨迹生成:通过样条曲线、直线插值等方法生成平滑路径。 实时更新:在规划过程中实时检测并避开新出现的障碍物。 在 MATLAB 中实现上述规划方法,可以借助其内置函数和工具箱: 优化工具箱:用于解决运动学逆解和路径规划中的优化问题。 Simulink:可视化建模环境,适合构建和仿真复杂的控制系统。 ODE 求解器:如 ode45,用于求解机器人动力学方程和轨迹执行过程中的运动学问题。 在实际应用中,通常会结合关节空间和笛卡尔空间的规划方法。先在关节空间生成平滑轨迹,再通过运动学正解将关节轨迹转换为笛卡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值