逻辑回归中的损失函数的解释

本文深入解析了逻辑回归模型的原理,包括其如何通过sigmoid函数将线性关系转化为非线性关系,以及为何采用特定的损失函数。通过Andrew Ng的课程资源,详细解释了损失函数的设计逻辑,为理解深度学习的损失函数提供了基础。

https://blog.youkuaiyun.com/weixin_41537599/article/details/80585201

 

1.Logistic Regression(逻辑回归)
逻辑回归是机器学习中的一个非常常见的模型, 逻辑回归模型其实仅在线性回归的基础上,套用了一个逻辑函数。
逻辑回归可以看做是两步,第一步和线性回归模型的形式相同,即一个关于输入x的线性函数:
第二步通过一个逻辑函数,即sigmoid函数,将线性函数转换为非线性函数。
2.损失函数
为了训练逻辑回归模型的参数w和b需要一个代价函数,算法的代价函数是对m个样本的损失函数求和然后除以m:


3.为什么逻辑回归的损失函数是这样的形式
我们假定输入样本x,用y^表示训练样本x条件下预测y=1的概率,对应的,用1-y^表示训练样本x条件下预测y=0的概率,也就是说:

我们可以把这两个公式合并成一个公式:

可以发现,在y=1时公式右边等于y^,在y=1时公式右边等于1-y^。由于log函数是严格递增函数,所以最大化log等价于最大化原函数,上式因此可以化简为式子,也就是损失函数的负数。

最大化似然函数也就是最小化损失函数。
对于m个样本的整个训练集,服从独立同分布的样本的联合概率就是每个样本的概率的乘积:

同样的,最大化似然函数也就是最小化代价函数,因此可以去掉负号,并除以一个常数m对代价函数进行适当的缩放,得到:
4.参考资料
以上是解释在逻辑回归中为什么设定这样的损失函数,对之后的深度学习的损失函数原理做一定启发。参考资料是Andrew Ng在Coursera上的neural networks and deep learning课程:
https://www.coursera.org/learn/neural-networks-deep-learning/home/welcome
---------------------  
作者:yidiLi  
来源:优快云  
原文:https://blog.youkuaiyun.com/weixin_41537599/article/details/80585201  
版权声明:本文为博主原创文章,转载请附上博文链接!

转载于:https://www.cnblogs.com/fengff/p/10167739.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值