[codeforces 339]D. Xenia and Bit Operations

本文针对CodeForces339D题目“Xenia and Bit Operations”,介绍了通过构建一棵倒置的完全二叉树来高效计算序列经过交替的位或与位异或操作后的结果值v的方法。此外,还提供了对于每个查询更新序列并重新计算值v的解决方案。

[codeforces 339]D. Xenia and Bit Operations

试题描述

Xenia the beginner programmer has a sequence a, consisting of 2n non-negative integers: a1, a2, ..., a2n. Xenia is currently studying bit operations. To better understand how they work, Xenia decided to calculate some value v for a.

Namely, it takes several iterations to calculate value v. At the first iteration, Xenia writes a new sequence a1 or a2, a3 or a4, ..., a2n - 1 or a2n, consisting of 2n - 1 elements. In other words, she writes down the bit-wise OR of adjacent elements of sequence a. At the second iteration, Xenia writes the bitwise exclusive OR of adjacent elements of the sequence obtained after the first iteration. At the third iteration Xenia writes the bitwise OR of the adjacent elements of the sequence obtained after the second iteration. And so on; the operations of bitwise exclusive OR and bitwise OR alternate. In the end, she obtains a sequence consisting of one element, and that element is v.

Let's consider an example. Suppose that sequence a = (1, 2, 3, 4). Then let's write down all the transformations (1, 2, 3, 4)  → (1 or 2 = 3, 3 or 4 = 7)  →  (3 xor 7 = 4). The result is v = 4.

You are given Xenia's initial sequence. But to calculate value v for a given sequence would be too easy, so you are given additional mqueries. Each query is a pair of integers p, b. Query p, b means that you need to perform the assignment ap = b. After each query, you need to print the new value v for the new sequence a.

输入

The first line contains two integers n and m (1 ≤ n ≤ 17, 1 ≤ m ≤ 105). The next line contains 2n integers a1, a2, ..., a2n (0 ≤ ai < 230). Each of the next m lines contains queries. The i-th line contains integers pi, bi (1 ≤ pi ≤ 2n, 0 ≤ bi < 230) — the i-th query.

输出

Print m integers — the i-th integer denotes value v for sequence a after the i-th query.

输入示例

2 4
1 6 3 5
1 4
3 4
1 2
1 2

输出示例

1
3
3
3

数据规模及约定

见“输入

题解

我们发现“运算之后得到新序列”这一过程只会进行 n 次,事实上,这整个过程就像一个倒过来的完全二叉树,我们不妨将初始序列得到的这颗完全二叉树建出来;以后每改动一个数字即改变了一个叶节点的权值,受到影响需要改动的节点为该叶节点到根节点(最终答案)的路径,于是每次修改时间复杂度也是 O(n) 的。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std;

const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
    if(Head == Tail) {
        int l = fread(buffer, 1, BufferSize, stdin);
        Tail = (Head = buffer) + l;
    }
    return *Head++;
}
int read() {
    int x = 0, f = 1; char c = getchar();
    while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

#define maxn 20
#define maxm 1048576
int n, q, ToT, A[maxm], fa[maxm];

int main() {
	n = read(); q = read();
	for(int i = 0; i < (1 << n); i++) A[i] = read();
	
	memset(fa, -1, sizeof(fa));
	ToT = 1 << n; bool cur = 0;
	int nl = 0, nr = (1 << n) - 1;
	for(int i = 1; i <= n; i++, cur ^= 1) {
		int nnl = -1, nnr = -1;
		for(int j = nl; j < nr; j += 2) {
			if(cur) A[ToT++] = A[j] ^ A[j^1], fa[j] = fa[j^1] = ToT - 1;
			else A[ToT++] = A[j] | A[j^1], fa[j] = fa[j^1] = ToT - 1;
			if(nnl < 0) nnl = ToT;
			nnr = ToT;
		}
		nl = nnl; nr = nnr;
	}
//	printf("%d\n", ToT);
	
	while(q--) {
		int p = read() - 1; A[p] = read();
		cur = 0;
		while(fa[p] >= 0) {
			if(cur) A[fa[p]] = A[p] ^ A[p^1];
			else A[fa[p]] = A[p] | A[p^1];
			p = fa[p]; cur ^= 1;
		}
		printf("%d\n", A[ToT-1]);
	}
	
	return 0;
}

 

转载于:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/5833913.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值