机器学习算法总结(一)

经典机器学习算法解析

        感知机:这是最简单的一个机器学习算法,不过有几点还是要注意一下。

                   首先是损失函数的选取,还有为了使损失函数最小,迭代过程采用的梯度下降法,最后得到最优的w,b

                   直观解释就是,调整w,b的值,使分离超平面向误分类点移动,以减小误分点与超平面的距离,直至超平面

             越过误分类点使其被正确分类。

       K近邻:

               给定一个训练数据集,对新输入的实例,在训练数据集中找到与该实例最近的K个实例,这K个实例多数属于某个

         类,就把该输入实例分为某个类。

              值得注意的是为了实现K近邻算法所采用的KD树。它是为了减小计算距离的次数所采用的一种特殊的存储结构。它的

        实现和搜索是要学会的。

    朴素贝叶斯:

            通过训练数据集学习联合概率分布,然后基于此模型,对给定的输入X,利用贝叶斯定理求出后验概率最大的输出Y。

            它的最大特点是,对条件概率分布作了条件独立性的假设,也就是说分类特征在类确定的条件下都是独立的。

    对回归方法的认识:   

           线性回归假设特征和结果满足线性关系。

           为了评估预测的好坏,我们定义了一个错误函数,通过使错误函数最小,来选取最优的参数值,需要注意的是,为什么要选取

      误差函数为平方和。

          为了使错误函数最小,可以采用:梯度下降法、最小二乘法 。

         分类和对数回归:

               回归一般不用在分类问题上,因为回归是连续模型,而且受噪声影响较大。要想将其用于分类,需要引入对数回归。

               对数回归: 本质上是线性回归,先把特征线性求和,然后使用一层映射函数来分类。

               softmax回归:对数回归一般是针对二分类问题的,softmax回归可用于多类别。

              

           

              

 

转载于:https://www.cnblogs.com/573177885qq/p/4478255.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值