BCZM : 2.1

1.问题描述

实现一个函数,输入一个无符号整数,输出该数二进制中的1的个数。例如把9表示成二进制是1001,有2位是1,因此如果输入9,该函数输出2

 

2.分析与解法

解法1:利用十进制和二进制相互转化的规则,依次除余操作的结果是否为1 代码如下:

int Count1(unsigned int v)
{
int num = 0;

while(v)
{
if(v % 2 == 1)
{
num++;
}
v = v/2;
}

return num;
}


解法2:向右移位操作同样可以达到相同的目的,唯一不同的是,移位之后如何来判断是否有1存在。对于这个问题,举例:10100001,在向右移位的过程中,我们会把最后一位丢弃,因此需要判断最后一位是否为1,这个需要与00000001进行位“与”操作,看结果是否为1,如果为1,则表示当前最后八位最后一位为1,否则为0,解法代码实现如下,时间复杂度为O(log2v)。

int Count2(unsigned int v)
{
unsigned int num = 0;

while(v)
{
num += v & 0x01;
v >>= 1;
}
return num;
}


解法3:利用"与"操作,不断清除n的二进制表示中最右边的1,同时累加计数器,直至n为0,这种方法速度比较快,其运算次数与输入n的大小无关,只与n中1的个数有关。如果n的二进制表示中有M个1,那么这个方法只需要循环k次即可,所以其时间复杂度O(M),代码实现如下:

int Count3(unsigned int v)
{
int num = 0;

while(v)
{
v &= (v-1);
num++;
}
return num;
}


编程之美同时给出了8bit的情况下,解法4:使用分支操作,解法5:查表法 再计算32bit无符号整数时,需要将32bit切为4部分 然后每部分分别运用解法4解法5下面仅给出代码:

解法4:
int Count4(unsigned int v)
{
int num = 0;

switch(v)
{
case 0x0:
num = 0;
break;
case 0x1:
case 0x2:
case 0x4:
case 0x8:
case 0x10:
case 0x20:
case 0x40:
case 0x80:
num = 1;
break;
case 0x3:
case 0x6:
case 0xc:
case 0x18:
case 0x30:
case 0x60:
case 0xc0:
num = 2;
break;
//.....
}
return num;
}

解法5:
unsigned int table[256] =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};

int CountTable(unsigned int v)
{
return table[v & 0xff] +
table[(v >> 8) & 0xff] +
table[(v >> 16) & 0xff] +
table[(v >> 24) & 0xff] ;
}

平行算法,思路:将v写成二进制形式,然后相邻位相加,重复这个过程,直到只剩下一位。以217(11011001)为例,有图有真相,下面的图足以说明一切了。217的二进制表示中有5个1。


代码如下:

int Count6(unsigned int v)
{
v = (v & 0x55555555) + ((v >> 1) & 0x55555555) ;
v = (v & 0x33333333) + ((v >> 2) & 0x33333333) ;
v = (v & 0x0f0f0f0f) + ((v >> 4) & 0x0f0f0f0f) ;
v = (v & 0x00ff00ff) + ((v >> 8) & 0x00ff00ff) ;
v = (v & 0x0000ffff) + ((v >> 16) & 0x0000ffff) ;

return v ;
}

 

求整数A和B的二进制表示中有多少位不同
首先A与B进行异或运算,结果M,计算M中含有的1的个数。

 

转载于:https://www.cnblogs.com/noryes/p/8640844.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值