医保费用监控指标体系建立(三)总体要求——报表设计

博客介绍了报表相关内容,包括从金额、人数等指标类反映不同维度指标情况,如按时间、险种等维度组合;统计报表针对不同维度指标组具体指标不同,组合形式多样;还提及总体指标反映宏观情况,报表设计按各维度选取范围组合。

一张报表就是在一定条件下,不同维度的指标值列表,其中维度体现在记录上,即一组维度一条记录,而指标体现在记录字段上,即一组维度有若干指标。

1. 指标及维度

从金额、人数、均数、比例4个指标类分别反映不同维度或组合维度下的指标情况。

1.1 按不同时间维度组合(代码D),如下表:

时间维度

说明

年(D1)

年报

月(D2)

月报

 

1.2  按不同险种维度(代码S),如下表:

险种维度

说明

城职(S1)

 

城乡(S2)

 

 

1.3 按不同就医地点维度(代码Y),如下表:

就医地点维度

说明

本地(Y1)

 

异地(Y2)

 

 

1.4 就医方式维度(代码J),如下表:

就医方式

说明

住院(J1)

 

门特(J2)

 

普通门急诊(J3)

含药店购药

 

1.5  针对上述每一种情况,采用逐级划分维度(代码P),如下表:

分类维度

明细维度

医疗机构类别(P11)

医疗机构(P10)

医疗机构等级(P12)

医保项目类别(P21)

医保项目(P20)

医保项目费用类别(P22)

 

疾病(P30)

参保人类别(P41)

参保人(P40)

参保单位类别(P51)

参保单位(P50)

 

医生(P60)

维度上一个分类或明细维度,二者不组合。

1.6 指标(代码T),如下表:

指标组合

指标组

说明

费用情况

金额+比例

金额

包括支付构成(统筹支付、大病支付、自付、自费),项目类别(甲类、乙类、自费),项目费用类别(药品、诊疗项目、材料等)

金额占比

 

金额增长率

 

就诊数/接诊数情况

就诊数/接诊数+比例

就诊数/接诊数

如人数、人次数

就诊率

 

占比

 

增长率

 

均数情况

均数+比例

均数

如人均费用、次均费用、平均住院天数、平均床日费用、同级医院均数等

均数增长率

 

极值

最大金额

最高金额、最大人数

最小金额

最低金额、最少人数

...

 

 

根据不同维度对指标进行组合,形成不同指标组(T1、T2、T3等)。

 

2.  统计报表

针对不同的维度,指标组的具体指标有所不同,如医保项目相关的指标就设有统筹支付和大病支付指标。组合报表的形式多样化,如下表:

序号

D

S

Y

J

P

T

报表编号

说明

1

D1

S1

Y1

J1

P11

T1

D1-S1-Y1-J1-P11-T1

本地城职,不同医疗机构类别住院费用年报。本地城职,不同医疗机构类别门诊费用年报

2

T2

3

T3

 

 

4

P12

T1

 

 

5

T2

 

 

6

T3

 

 

 

 

28

S2

 

 

P10

T1

 

 

29

 

 

T2

 

 

30

 

 

T3

 

 

 

 

 

 

 

 

 

 

 

统计表由上述四种组合共同构成,如基于上述组合形成报表,如D-S-J-P21-T1报表格式如下:

年度

险种

就医

地点

就医

方式

医疗机构类别

金额

(万)

占比

(%)

同比

(%)

环比

(%)

2017

城职

异地

住院

公立医院

3000.00

30

5

3

2017

城乡

本地

门诊

私立医院

2000.00

25

6

8

 

 

 

 

 

 

 

 

3. 总体指标分析

总体指标反映宏观情况,其报表设计各个维度选取范围如下:

维度

选取范围

说明

时间维度(D)

D1~D2

 

险种维度(S)

S1~S2

 

就医地点维度(Y)

Y1~Y2

 

就医方式维度(J)

J1~J3

 

维度(P)

P11、P12、P21、P22、P41、P51

全部分类维度

指标组(T)

T1、T2

 

报表设计通过上述选取范围进行组合,具体表格设计见设计文档,有兴趣的可以和我联系。

转载于:https://www.cnblogs.com/ChinaEHR/p/10552769.html

### 光流法C++源代码解析与应用 #### 光流法原理 光流法是一种在计算机视觉领域中用于追踪视频序列中运动物体的方法。它基于亮度不变性假设,即场景中的点在时间上保持相同的灰度值,从而通过分析连续帧之间的像素变化来估计运动方向和速度。在数学上,光流场可以表示为像素位置和时间的一阶导数,即Ex、Ey(空间梯度)和Et(时间梯度),它们共同构成光流方程的基础。 #### C++实现细节 在给定的C++源代码片段中,`calculate`函数负责计算光流场。该函数接收一个图像缓冲区`buf`作为输入,并初始化了几个关键变量:`Ex`、`Ey`和`Et`分别代表沿x轴、y轴和时间轴的像素强度变化;`gray1`和`gray2`用于存储当前帧和前一帧的平均灰度值;`u`则表示计算出的光流矢量大小。 #### 图像处理流程 1. **初始化和预处理**:`memset`函数被用来清零`opticalflow`数组,它将保存计算出的光流数据。同时,`output`数组被填充为白色,这通常用于可视化结果。 2. **灰度计算**:对每一像素点进行处理,计算其灰度值。这里采用的是RGB通道平均值的计算方法,将每个像素的R、G、B值相加后除以3,得到一个近似灰度值。此步骤确保了计算过程的鲁棒性和效率。 3. **光流向量计算**:通过比较当前帧和前一帧的灰度值,计算出每个像素点的Ex、Ey和Et值。这里值得注意的是,光流向量的大小`u`是通过`Et`除以`sqrt(Ex^2 + Ey^2)`得到的,再乘以10进行量化处理,以减少计算复杂度。 4. **结果存储与阈值处理**:计算出的光流值被存储在`opticalflow`数组中。如果`u`的绝对值超过10,则认为该点存在显著运动,因此在`output`数组中将对应位置标记为黑色,形成运动区域的可视化效果。 5. **状态更新**:通过`memcpy`函数将当前帧复制到`prevframe`中,为下一次迭代做准备。 #### 扩展应用:Lukas-Kanade算法 除了上述基础的光流计算外,代码还提到了Lukas-Kanade算法的应用。这是一种更高级的光流计算方法,能够提供更精确的运动估计。在`ImgOpticalFlow`函数中,通过调用`cvCalcOpticalFlowLK`函数实现了这一算法,该函数接受前一帧和当前帧的灰度图,以及窗口大小等参数,返回像素级别的光流场信息。 在实际应用中,光流法常用于目标跟踪、运动检测、视频压缩等领域。通过深入理解和优化光流算法,可以进一步提升视频分析的准确性和实时性能。 光流法及其C++实现是计算机视觉领域的一个重要组成部分,通过对连续帧间像素变化的精细分析,能够有效捕捉和理解动态场景中的运动信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值